Значит, прибавление энергии движения равносильно прибавлению массы. Между массой и энергией есть прямая связь!
Накапливая эти неизбежные выводы, мы словно бы забыли о фотоне, с которого все началось. Но теперь, взглянув на него новыми глазами, мы окунемся в новые сомнения, которые могут показаться совсем уж безысходными.
10
Сомнение первое… Фотон материален, а между тем летит со скоростью света. Предел, недостижимый для других материальных частиц, оказывается достижимым для частицы света! Что же она такое в отличие от иных физических тел — в отличие от ракет или протонов?
Конечно, масса движущегося фотона не становится бесконечной оттого, что он мчится со световою скоростью. Иначе он не мог бы существовать и в движении.
Его массу в движении очень легко установить: ведь по своей физической природе частица света — это квант излучения, или порция электромагнитной энергии. Закон Е = М·С<sup>2</sup> тотчас позволяет узнать массу этой порции, так же как прибавку в весе у больного, разметавшегося в жару, так же как массу любого количества любой энергии: надо только величину кванта Е разделить на С<sup>2</sup>.
И вот получается, что квант или фотон фиолетового света в 150 тысяч раз легче покоящегося электрона — легчайшей из крупиц вещества. А фотон красного света еще в два раза легче фиолетового кванта. Помните, Ньютон думал совсем другое: он полагал, что корпускулы красного конца солнечного спектра — самые большие, а фиолетового конца — самые малые. У него не могло быть никакого представления о подлинной природе корпускул света. Но то, чего уж и вовсе не мог бы вообразить Ньютон, так это будущей предательской роли световых частиц по отношению к его, ньютоновой, механике.
Возродившись через двести лет в виде квантов-фотонов, световые корпускулы возглавили вместе с электронами бунт элементарных частиц и атомов против старых законов движения и взаимодействия материальных тел. Они сразу вошли в подчинение законам Эйнштейна, а потом потребовали еще и создания новой механики — квантовой. (Об ее идеях — речь впереди, во второй части книги.) А сегодня им уже и этого, кажется, мало!
Так вот — о массе движущегося фотона…
Хоть она и ничтожна, но перегружена загадками.
Протоны в Дубне, прежде чем пуститься в свои 25 кругосветных путешествий по камере ускорителя, покоятся. Точнее, лениво расхаживают с малыми тепловыми скоростями по камере водородного источника (вы помните, конечно, что протоны — это просто ядра водорода). Понижая температуру, их можно заставить совсем, замедлить движение — их можно остановить. Иными словами, у них и в покое есть реальная масса. Им есть что удесятерять по мере ускорения, когда энергия их движения начинает постепенно нарастать до 10 миллиардов электроновольт. И у космической ракеты есть реальная масса покоя — ее можно легко определить на весах перед началом рейса. Ракете тоже есть что увеличивать в пути.
А у фотона ничего этого нет. Так и просятся на язык слова сочувствия: «Посмотрите, ему сейчас отправляться в дальнюю дорогу с сумасшедшей скоростью в 300 тысяч километров в секунду, а он еще не запасся никакою массой!» Действительно, даже за мгновение до старта фотона еще не существует — «не на что смотреть»: его масса покоя равна нулю.
Как же накапливает фотон свою массу движения? Да и годится ли здесь слово «накапливает»? Накопление — дело постепенное, а фотон вначале был ничто — нуль. Ускорять ничто нельзя — нуль нельзя ни удваивать, ни удесятерять, все равно он останется нулем. Как же возникает масса движущегося фотона?
Остается предположить только одно: фотон сразу приобретает всю свою массу — скачком! Он не разгоняется постепенно, а с момента рождения обладает всей своей скоростью — всей своей энергией. |