Начинаете, как водится, с единиц. 5 + 7 + 9 = 21. Затем вы делите 21 на 10, получаете частное 2 и остаток 1, вы записываете 1 и переносите полученное частное к десяткам…
Ну как? Понравилось? Не сомневаюсь, что вы уже с нетерпением ждете возможности задать мне вопрос: «Откуда вы все это взяли?» А быть может, и более конкретный: «Зачем надо было делить на 10?»
Но, уважаемые читатели! Ведь именно эти операции вы выполняете при сложении! Только благодаря тому, что мы пользуемся удивительно милосердной десятичной системой исчисления, при делении любого двузначного числа на 10 его первая цифра — это частное от деления, а вторая — остаток. По сути дела, мы имеем частное и остаток, не выполняя самого действия деления, поэтому последующее сложение выполняется автоматически. Если при сложении единиц получилось 21, мы записываем цифру 1, а 2 переносим к десяткам. Если бы при сложении единиц получилось 57, мы бы записали 7, а к десяткам перенесли 5 и т. д.
Так получается только потому (не забывайте!), что, выполняя сложение «в столбик», начиная справа и двигаясь налево, каждая правая колонка цифр представляет величину в десять раз меньшую, чем ее соседка слева. Самая правая колонка — единицы, левее — десятки, сотни и т. д.
Приведенное выше объясняет, почему процесс сложения у нас достаточно прост. Пайк называет его «простым сложением».
А теперь представьте, что у вас есть 1 дюжина и 8 яблок, у вашего друга — 1 дюжина и 10 яблок, а у случайного прохожего — 1 дюжина и 9 яблок. Тогда нам придется сложить следующие величины.
1 дюжина 8 единиц
1 дюжина 10 единиц
1 дюжина 9 единиц
8 + 10 + 9 = 27. Поэтому мы записываем 7 и переносим в следующую колонку 2? Ни в коем случае. Отношение «дюжин» к «единицам» вовсе не 10, а 12. А мы используем десятичную систему исчисления. Поэтому мы не имеем права действовать автоматически. Придется подумать.
Прежде всего полученную сумму 27 следует разделить на величину «отношения дюжин к единицам», то есть на 12. Получается частное 2 и остаток 3. Вот мы и записываем 3, а переносим 2. В колонке дюжин получим: 1 + 1 + 1 + 2 = 5. Искомая сумма — 5 дюжин и 3 яблока.
Если отношение между соседними колонками цифр отличается от 10, следует производить все приведенные выше действия, то есть выполнять «сложное сложение». К этой операции придется прибегнуть, если вам потребуется сложить 5 фунтов 12 унций и 6 фунтов 8 унций (в фунте 16 унций) или если нужно будет сложить 3 ярда 2 фута 6 дюймов и 1 ярд 2 фута 6 дюймов (в 1 футе 12 дюймов, а в 1 ярде 3 фута).
Хотите — посчитайте первую сумму. А я посчитаю вторую.
3 ярда 2 фута 6 дюймов
1 ярд 2 фута 8 дюймов
6 + 8 = 14 дюймов. 14 : 12 = 1, остаток 2. Записываем 2 и переносим 1 в соседнюю колонку. 2 + 2 + 1 = 5. 5 : 3 = 1, остаток 2. Записываем 2 и переносим 1 в соседнюю колонку. 3 + 1 + 1 = 5. Искомая сумма — 5 ярдов 2 фута 2 дюйма.
Но по какой причине мы должны использовать так много различных недесятичных систем? Для этого существует много причин (все они в разное время были более или менее важными). Но сейчас мы достаточно поумнели и пользуемся только (или почти только) десятичной. Если бы представилось возможным, мы бы напрочь забыли о сложном сложении, сложном вычитании, так же как и о сложных умножении и делении (они тоже, как вы догадываетесь, существуют).
Между прочим, иногда сама природа бывает против универсальной десятки. При измерении времени, к примеру, продолжительность суток и года устанавливается астрономическими условиями, и отказаться от них невозможно. |