Изменить размер шрифта - +
до н. э. К счастью, текст его труда «О величинах и расстояниях Солнца и Луны» сохранился до наших дней. В нем Аристарх основывается как на постулатах на четырех астрономических наблюдательных фактах:

1. «В фазе первой четверти Луны ее угловое расстояние от Солнца на одну тридцатую квадранта меньше, чем целый квадрант». (То есть, когда Луна выглядит как полукруг, угол между направлениями на Луну и на Солнце на 3° меньше 90°, составляя 87°.)

2. «Диск Луны точно закрывает видимый диск Солнца во время солнечного затмения, имея тот же размер».

3. «Ширина земной тени равна двойной ширине диска Луны». (Проще всего это геометрически интерпретировать таким образом: если на место Луны поместить сферу в два раза большего диаметра, чем Луна, она точно заполнит пространство земной тени во время лунного затмения. Возможно, это было определено путем сравнения промежутков времени от момента начала покрытия Луны тенью Земли до полного ее вхождения в тень; пребывания Луны внутри полной тени; от начала выхода Луны из тени до полного окончания затмения.)

4. «Размер Луны равен одной пятнадцатой части зодиака». (Весь зодиак – это полная окружность в 360°, но, очевидно, здесь Аристарх имел в виду один отдельно взятый зодиакальный знак. Поскольку зодиак состоит из 12 созвездий, один знак занимает в угловом измерении 360°/12 = 30°, а 1/15 часть от этого угла равняется 2°.)

 

Исходя из вышесказанного, Аристарх заключил, что:

1. Расстояние от Земли до Солнца не менее чем в 19 и не более чем в 20 раз больше расстояния от Земли до Луны.

2. Диаметр Солнца не менее чем в 19 и не более чем в 20 раз больше диаметра Луны.

3. Диаметр Земли не менее чем в 108/43 и не более чем в 60/19 раз больше диаметра Луны.

4. Расстояние от Земли до Луны не более чем в 30 и не менее чем в 45/2 раз больше диаметра Луны.

 

Когда Аристарх проводил эти вычисления, тригонометрия еще не была известна, поэтому ему приходилось прибегать к сложным геометрическим построениям, чтобы получить эти нижние и верхние предельные

Бесплатный ознакомительный фрагмент закончился, если хотите читать дальше, купите полную версию
Быстрый переход