Изменить размер шрифта - +

Накинув на планету координатную сетку и еще не догадываясь, что форма ее отличается, пусть немножко, от идеала, можно было надеяться, что построением карт и глобусов завершится решение главнейших географических задач. Выяснив некоторые удивительные геометрические закономерности строения кристаллов, тогдашние ученые имели основания подозревать, что столь же успешно будут открыты и другие геологические закономерности.

В славную эпоху Просвещения парижский академик, астроном, физик и математик Пьер Симон Лаплас высказал уверенность, что в принципе можно выразить все Мироздание в формуле (или системе формул). Клод Анри Сен-Симон даже полагал, что и область нравственности можно свести к формулам гравитации.

Но чем лучше узнавали люди окружающую реальную природу, тем больше убеждались, что математизировать естествознание не так-то просто, а то и вообще невозможно. В начале XX века В.И. Вернадский писал:

«Весьма часто приходится слышать убеждение, не соответствующее ходу научного развития, будто точное знание достигается лишь при получении математической формулы, лишь тогда, когда к объяснению явления и к его точному описанию могут быть приложены символы и построения математики... Но нет никаких оснований думать, что при дальнейшем развитии науки явления, доступные научному объяснению, подведутся под математические формулы или под так или иначе выраженные числовые правильные соотношения; нельзя думать, что в этом заключается конечная цель научной работы».

Во второй половине XX века некоторые ученые, пренебрегая его предупреждением, стали математизировать геологию. Была проделана большая работа, давшая ничтожные результаты. Методы статистики, обработки полученных при наблюдениях параметров, корреляции и т. п. как были, так и будут использоваться в геологии. Но поднять математизацией науки о Земле на более высокий уровень не удалось.

Правда, просвещенный читатель заметит: господствующая в наше время глобальная тектоника плит была создана на основе геофизических изысканий и математических моделей! Вот вам положительный пример!

Увы, это всего лишь очередной научный, миф, что мы постараемся доказать в 10-й главе.

Отношение к математике во многом зависит от того, как понимать суть научного исследования в естествознании. Распространено мнение, что самое главное — описать явление, свести его к формальной схеме, отвечая на вопрос как, а вовсе не почему. Нильс Бор выразился так: «Математика — это язык». Можно даже продолжить: универсальный язык научного описания.

Понятно стремление представителей разных областей знания перейти на одно общее наречие. Некогда в Европе единым языком науки признавали латынь. Чем это кончилось для латыни, общеизвестно.

Была попытка выработать единый всемирный диалект для живых языков. Нечто осредненное — эсперанто. Но оно не заменило ни один нормальный язык. И только для компьютеров — интеллектуальных автоматов — математические языки оказались исключительно удобны и полезны.

Математика универсальна. Это бесспорно. Одной и той же формулой можно выразить движение разных объектов: облака и дождинки, человека и червя, локомотива и камня, катящегося с горы. Хорошо это или плохо? Для некоторых целей — хорошо. Но для понимания реального мира такого рода абстракции вредны.

Оперируя с несуществующими идеальными фигурами и процессами, математика демонстрирует поистине безграничные возможности. Особенно полезен этот язык для выражения идей механики и техники. Она манипулирует любыми числами и запросто воспроизводит огромнейшие величины, подставляя нуль за нулем, словно нанизывая бублики на веревку.

Оказывается, можно выдумать число, превышающее количество атомов во Вселенной! Для такого титанического деяния достаточно произвести простую операцию: поставить, скажем, цифру 100 пару раз выше цифры 10. Получится 10 в сотой степени. В итоге мы имеем нечто в полном смысле несусветное и, по-видимому, превышающее число атомов во всей наблюдаемой Вселенной (желающие могут уточнить).

Быстрый переход