Изменить размер шрифта - +

Химики-органики разработали приемы, используя которые можно заставить аминокислоты соединиться в цепочку. Такие полимеры аминокислот называются полипептидами. Полипептид можно получить искусственно.

Белок вырабатывается только живой клеткой. В чем же разница между полимером, полученным в лаборатории, и полимером, построенным живой клеткой?

Вот здесь мы подошли к очень существенному и интересному вопросу. Известно, что аминокислоты можно синтезировать в пробирке. Можно сделать из них полимер. Будет ли этот полимер обладать теми свойствами белка, которые делают незаменимой эту молекулу в организме? Сразу и определенно можно сказать, что нет!

И вот почему.

Обычно белковая молекула содержит сто-двести строительных блоков, их называют аминокислотными остатками. В «остатки» их записали потому, что, когда две молекулы аминокислоты связываются в дипептид, они «на пару» теряют одну молекулу воды. В пептидной цепи их структура уже несколько иная, чем в свободном виде. Если аминокислотных остатков сто, то очевидно, что из них (используя 20 различных сортов аминокислот) можно выстроить 20 10° различных полипептидных цепей, отличающихся порядком расположения аминокислотных остатков. А сколько белков использует при работе клетка?

Вернемся к нашей микоплазме. Ей для нормальной жизни нужно приблизительно сто ферментов. Эти сто ферментов она строит из тех же двадцати аминокислот.

Могла бы строить 20 10°, а строит меньше, чем 202. Все дело в специфичности белков-ферментов. Последовательность аминокислот в белке полностью определяет его функцию и, в частности, каталитические, или ферментативные, свойства. Поэтому, если мы каким-либо образом поменяем порядок аминокислот в белке, он потеряет свои свойства, которые жизненно необходимы для клетки, для организма.

Но ведь получил американский биохимик С. Фокс так называемые протеиноиды? Получил. Их молекулярный вес порядка 30 тысяч, и, значит, они содержат около 300 аминокислотных остатков. Эти протеиноиды похожи на белки, но все-таки это не белки. Да и способ их получения уж слишком экзотичен.

Фокс брал полностью безводную смесь аминокислот, причем обязателен был избыток аспарагиновой и глютаминовой кислот. Затем нагревал смесь до 170 градусов Цельсия. Аминокислоты сплавлялись в белковоподобное вещество, которое, правда, обладало очень маленькой каталитической активностью. Кроме того, им без Вреда могли лакомиться и крысы и бактерии.

Но полностью безводные условия на ранней Земле вряд ли могли существовать. Кроме того, если органика Образовывалась, то синтезировались не только аминокислоты, а и другие молекулы тоже. Так что опыты Фокса не слишком правдоподобны с геологической точки зрения. Таким образом, на сегодняшний день наиболее существенный из компонентов живой материи — белок не удалось получить в экспериментах, связанных с предбиологическими исследованиями.

Другой важный класс макромолекул живых организмов — углеводы. Это соединения, в которых атомы углерода, водорода и кислорода находятся в соотношении 1:2:1. Будучи одним из основных компонентов нашей ежедневной пищи, углеводы поставляют значительную часть энергии, необходимой для живого организма.

Типичные углеводы, с которыми каждый из нас сталкивается ежедневно, — крахмал и сахар. Поскольку это вещества растительного происхождения, а основную массу живого на Земле составляют растения, углеводы имеют «прочное большинство голосов» среди других органических соединений на нашей планете.

Многие углеводы, выделенные из живых организмов, так же как и белки, полимеры. Но структурной единицей углеводов является молекула сахара, например, хорошо известной всем глюкозы. Поэтому полимеры глюкозы называются полисахаридами. Глюкоза, содержащаяся в свободном виде в сладких фруктах, необходима для «энергетического» питания организма. Недаром после болезни, когда человек ослаблен, ему назначают уколы глюкозы.

Быстрый переход