Изменить размер шрифта - +
Астрономы повезли свой прибор в Симеизскую обсерваторию в Крыму, чтобы с его помощью проникнуть в таинственную область Галактики. Если за пылевыми облаками находятся звезды, то может быть их инфракрасное излучение прорывается сквозь толщу космической пыли, и тогда «ночегляд» ею заметит!

В течение нескольких ночей астрономы исследовали небо в созвездии Стрельца и убедились, что позади темных облаков действительно расположено большое скопление ярких звезд. Если бы можно было убрать мешающие тучи пыли, мы видели бы в созвездии Стрельца яркое светящееся пятно овальной формы.

Дальнейшее усовершенствование электронных приборов для видения в инфракрасных лучах обещает дать еще больше сведений об этой, пока еще неизученной, области нашей Галактики, но даже то, что уже сделано, является замечательной победой новой отрасли астрономии, получившей название «астрономии невидимого».

Рис. 111. Один и тот же участок неба, сфотографированный в обычных лучах (наверху) и на пластинках, чувствительных к красным лучам (внизу).

 

Электронные и фотографические «ночегляды» помогли установить, что кроме сверкающих звезд, какие мы видим на небе, в мировом пространстве есть много несветящихся небесных тел — «темных звезд». Наша Галактика, по- видимому, населена небесными телами гораздо гуще, чем мы думали прежде. Электронные приборы уже начали во многом помогать старым оптическим системам — телескопам, а в некоторых случаях даже заменять их.

Дальнейшие успехи электронных ночезрительных телескопов — дело недалекого будущего. Первый опыт постройки такого телескопа был сделан в Советском Союзе в марте 1936 года.

 

 

Электроника изучает и применяет фотоэлементы трех типов. О двух из них уже шла речь — это столетовские фотоэлементы, в которых используется внешний фотоэффект (электроны, выбитые светом, вылетают наружу — за пределы вещества фотокатода), и фотосопротивления, в которых используется внутренний фотоэффект (электроны, выбитые светом, остаются внутри вещества и уменьшают его сопротивление электрическому току).

Разработан еще третий вид светочувствительных приборов, называемых вентильными фотоэлементами или фотоэлементами с запирающим слоем. В них, как и в фотосопротивлениях, электроны, выбитые светом из оболочек атомов, не вылетают наружу, а остаются внутри вещества. Этим они похожи на фотосопротивления, но отличаются от них одной важной особенностью.

Фотосопротивления, как и столетовские фотоэлементы, работают только тогда, когда к ним присоединен источник тока (батарея). Свет, выбивая из вещества фотокатода электроны, тем самым облегчает прохождение тока через вакуум в столетовских фотоэлементах или через вещество в фотосопротивлениях.

Элементы с запирающим слоем не нуждаются в дополнительных источниках тока. Они сами служат источником тока. На них падает свет, и они дают ток. Эти фотоэлементы — генераторы тока, непосредственно преобразующие световую энергию в электрическую.

Для изготовления фотоэлементов с запирающим слоем первоначально применяли закись меди. Толстую пластинку красной меди прокаливали в электрической печи так, чтобы она покрылась массивным слоем закиси меди. Затем с одной стороны пластинки закись полностью счищали, а с другой — поверх слоя закиси наносили тончайшую прозрачную пленку какого-либо металла — той же красной меди или золота.

К изготовленному таким способом фотоэлементу присоединяли проводники — один к нижнему слою металла, а другой к верхнему, прозрачному слою.

Как только на поверхность прозрачного слоя падает свет, в фотоэлементе возникает электрический ток. Электроны, выбитые светом из молекул закиси меди, проскакивают в верхний прозрачный слой металла, а оттуда устремляются в проводник. Совершив путешествие по проводам, электроны возвращаются обратно в слой закиси меди, проникая в нее с теневой стороны и замыкая цепь.

Быстрый переход