Изменить размер шрифта - +
Эмили, пирог круглый. Печенье круглое. Крекеры квадратные.

В основе этой шутки лежит похожее звучание слова pie («пирог») и названия буквы π, что и служит поводом для каламбура. Следовательно, комики должны быть благодарны Уильяму Джонсу за введение символа π. Этот математик XVIII столетия, так же как и многие другие ученые, зарабатывал себе на жизнь уроками в лондонских кофейнях, посетители которых должны были заплатить за вход один пенни. Преподавая в этих так называемых грошовых университетах, Джонс параллельно работал над крупным научным трудом под названием A New Introduction to the Mathematics («Новое введение в математику»). Именно в этой книге он впервые использовал греческую букву π в контексте обсуждения геометрии круга. В итоге появилась почва для новых математических каламбуров. Джонс выбрал символ π, потому что это начальная буква греческого слова περιφερια (периферия), что означает «окружность».

 

* * *

За три года до появления шутки с числом π в эпизоде «Человек-пирог» авторы «Симпсонов» уже упоминали это число в серии «Пока, пока, зубрила» (Bye, Bye, Nerdie, сезон 12, эпизод 16; 2001 год). Но на этот раз вместо воскрешения старой шутки сценаристы создали совершенно новую, хотя и основанную на одном любопытном случае из истории числа π. Для того чтобы оценить ее по достоинству, сперва необходимо вспомнить значение числа π и то, как оно измерялось на протяжении столетий.

Я уже говорил, что π = 3,14 – всего лишь приближенное значение. Дело в том, что π – иррациональное число, то есть назвать его абсолютно точное значение невозможно, поскольку в нем бесконечное количество десятичных знаков, в которых отсутствует какая-либо закономерность. Тем не менее математики прошлого ставили перед собой задачу выйти за рамки существующей приближенной оценки 3,14 и поймать это ускользающее число, рассчитав его максимально точное значение.

Первую серьезную попытку это сделать предпринял Архимед в третьем столетии до нашей эры. Он понимал, что точность измерения π зависит от точности измерения длины окружности. Но это весьма сложная задача, так как окружность состоит из кривых малой кривизны, а не из прямых линий. Важным достижением Архимеда стало решение обойти проблему измерения кривых путем аппроксимации окружности прямыми линиями.

Возьмем окружность, диаметр которой (d) равен единице. Мы знаем, что C = πd, а значит, длина окружности (С) равна π. Затем нарисуем два квадрата, один за пределами окружности и один внутри нее.

 

 

 

Безусловно, настоящая окружность должна быть меньше периметра большего квадрата и больше периметра меньшего квадрата. Таким образом, измерив периметры двух квадратов, мы получим верхний и нижний пределы длины окружности.

Периметр большего квадрата измеряется легко, поскольку каждая его сторона имеет ту же длину, что и диаметр круга, который, как нам известно, равен единице. Следовательно, периметр большего квадрата составляет 4 × 1 = 4 единицы.

Периметр меньшего квадрата вычислить несколько труднее, но мы можем определить длину каждой его стороны с помощью теоремы Пифагора. Очень кстати, что диагональ квадрата и две его стороны образуют прямоугольный треугольник, гипотенуза (H) которого не только совпадает с диагональю квадрата, но и имеет ту же длину, что и диаметр окружности, то есть единицу.

Быстрый переход