Изменить размер шрифта - +

Поразительное заявление Апу о том, что он запомнил до сорока тысяч десятичных знаков числа π, имеет смысл только в случае, если математики уже рассчитали это число с такой точностью. Так какова же была ситуация с его вычислением в 1993 году, когда эпизод вышел на экраны?

В главе 2 мы видели, как математики, начиная с древних греков, использовали многогранники для определения все более точного значения числа π и получили в итоге результат с точностью до тридцать четвертого десятичного знака. В 1630 году австрийский астроном Кристоф Гринбергер рассчитал число π с помощью многогранников до тридцать восьмого десятичного знака. С научной точки зрения нет совершенно никакого смысла в определении следующих цифр, поскольку данного значения вполне достаточно для выполнения самых сложных астрономических расчетов с максимально высокой точностью. И это не преувеличение. Если бы астрономы установили точный диаметр известной нам части Вселенной, то значения числа π до тридцать восьмого десятичного знака вполне бы хватило для расчета окружности Вселенной с точностью до размера атома водорода.

Тем не менее борьба за установление все большего количества цифр числа π продолжилась. Эта задача стала напоминать восхождение на Эверест. Число π выступало на математическом ландшафте в роли далекой горной вершины, и математики стремились взобраться на нее. Однако стратегия математиков изменилась. Вместо использования медленного подхода с применением многогранников они открыли ряд формул для определения значения числа π более быстрым способом. Например, в XVIII столетии Леонард Эйлер вывел следующую элегантную формулу:

 

 

Интересно то, что число π можно вывести из такой простой последовательности чисел. Это равенство известно как бесконечный ряд, поскольку оно состоит из бесконечного количества членов, и чем больше членов включено в расчеты, тем точнее будет результат. Ниже представлены результаты вычисления числа π с использованием одного, двух, трех, четырех и пяти членов ряда Эйлера:

 

 

 

 

 

 

Метод аппроксимации позволяет все плотнее приблизиться к истинному значению числа π; при этом по мере включения дополнительного члена уравнения результат становится точнее. Вычисление числа π с помощью пяти членов уравнения дает значение 3,140, что обеспечивает точность до двух десятичных знаков. В случае использования ста членов уравнения число π можно рассчитать с точностью до шести десятичных знаков: 3,141592.

Бесконечный ряд Эйлера – достаточно эффективный метод расчета значения числа π, но следующие поколения математиков изобрели и другие бесконечные ряды, позволяющие ускорить вычисления. Джон Мэчин, который в начале XVIII столетия был профессором астрономии в Колледже Грешема в Лондоне, разработал один из самых быстро сходящихся, хотя и не такой элегантный бесконечный ряд. Мэчин превзошел все предыдущие достижения, рассчитав значение числа π с точностью до ста десятичных знаков.

Другие математики использовали бесконечный ряд Мэчина еще активнее. К их числу относится и английский математик-любитель Уильям Шенкс, который посвятил большую часть своей жизни вычислению π. В 1874 году он заявил, что рассчитал 707 цифр числа π.

В знак уважения к столь героическому достижению музей науки в Париже, известный под названием «Дворец открытий», украсил свой зал числа π надписью со всеми 707 цифрами π.

Быстрый переход