Изменить размер шрифта - +
Веберовской гипотезе о двойном, противоположно направленном токе К. Нейман противопоставил в 1871 г. другую гипотезу, а именно: что в токе движется только одно из электричеств, например положительное, а другое — отрицательное — прочно связано с массой тела. В связи с этим мы встречаем у Видемана следующее замечание:

«Эту гипотезу можно было бы соединить с гипотезой Вебера, если к предполагаемому Вебером двойному току текущих в противоположных направлениях электрических масс ±7<sub>2</sub>e присоединить еще некоторый, внешне не проявляющийся ток нейтрального электричества, увлекающий с собой в направлении положительного тока электрические массы ±<sup>1</sup>/<sub>2e</sub>» (кн. iii, стр. 577).

Это утверждение опять-таки характерно для односторонней эмпирии. Для того чтобы электричество могло вообще течь, его разлагают на положительное и отрицательное. Но все попытки объяснить ток, исходя из этих двух материй, наталкиваются на трудности. И это относится одинаково как к гипотезе, что в токе имеется каждый раз лишь одна из этих материй, так и к гипотезе, что обе материи текут одновременно в противоположных направлениях, и, наконец, также и к той третьей гипотезе, что одна материя течет, а другая остается в покое. Если мы станем придерживаться этой последней гипотезы, то как мы объясним себе то необъяснимое представление, что отрицательное электричество, которое ведь достаточно подвижно в электрической машине и в лейденской банке, оказывается в токе прочно связанным с массой тела? Очень просто. Наряду с положительным током +e, который течет по проволоке направо, и отрицательным током —e, который течет налево, мы принимаем еще третий ток нейтрального электричества ±<sup>1</sup>/<sub>2e</sub>, текущий направо. Таким образом, мы сперва допускаем, что оба электричества могут вообще течь лишь в том случае, если они отделены друг от друга; а для объяснения явлений, наблюдающихся при течении раздельных электричеств, мы допускаем, что они могут течь и не отделенными друг от друга. Сперва мы делаем некоторое предположение, чтобы объяснить данное явление, а при первой трудности, на которую мы наталкиваемся, делаем другое предположение, которое прямо отменяет первое. Какова должна быть та философия, на которую имели бы хоть какое-нибудь право жаловаться эти господа?

Но, наряду с этим взглядом на электричество как на особого рода материю, вскоре появилась и другая точка зрения, согласно которой оно является простым состоянием тел, «силой», или, как мы сказали бы теперь, особой формой движения. Мы выше видели, что Гегель, а впоследствии Фарадей разделяли эту точку зрения. После того как открытие механического эквивалента теплоты окончательно устранило представление о каком-то особом «теплороде» и доказало, что теплота есть некое молекулярное движение, следующим шагом было применение нового метода также и к изучению электричества и попытка определить его механический эквивалент. Это удалось вполне. В особенности опыты Джоуля, Фавра и Рауля не только установили механический и термический эквиваленты так называемой «электродвижущей силы» гальванического тока, но и доказали ее полную эквивалентность энергии, высвобождаемой химическими процессами в гальваническом элементе или потребляемой ими в электролитической ванне. Благодаря этому делалась все более несостоятельной гипотеза о том, будто электричество есть какая-то особая материальная жидкость.

Однако аналогия между теплотой и электричеством была все же неполной. Гальванический ток все еще отличался в очень существенных пунктах от теплопроводности. Все еще нельзя было указать, что собственно движется в электрически заряженных телах. Допущение простых молекулярных колебаний, как в случае теплоты, оказалось здесь недостаточным. При колоссальной скорости электричества, превосходящей даже скорость света, все еще трудно было отказаться от представления, что между молекулами тела здесь движется нечто вещественное.

Быстрый переход