Изменить размер шрифта - +

Я до сих пор не понимаю, как он это делает, — признается мне Судаков — полный, лысеющий человек, специалист в области теории вычислительных машин из Иерусалима, — несмотря на то что я знаю кое-что о психологии. Мы приходили, рассаживались, нам давали задачи. Мы их решали. Рукшин сидел за своим столом. Когда кому-нибудь из нас удавалось решить задачу, он шел к Рукшину и объяснял свое решение. Может быть, обсуждал его с наставником. Вот и все. Каково? — Судаков смотрит на меня с видом победителя через стол в кафе.

— Но ведь так все делают, — произношу я то, чего от меня, по всей видимости, ждут.

— Вот именно! Об этом и речь, — заключает радостно ерзающий на стуле Судаков.

Я видела, как проходят занятия в Петербургском математическом центре для одаренных детей — так теперь называется разросшийся кружок Сергея Рукшина, который посещают примерно двести детей в возрасте одиннадцати лет и старше. Как и группа Перельмана, они приходят на занятия дважды в неделю после школы. В конце каждого занятия (двухчасового для младших школьников, долгого, иногда до ночи — для старшеклассников) ученики получают домашнее задание. Рукшин утверждает, что один из его уникальных методов заключается в том, чтобы правильно подобрать задания. Наставник должен изучить несколько списков заданий и выбрать те, которые помогут ученикам достичь прогресса в течение следующих нескольких часов. Через три дня ученики приносят собственные решения, которые они объясняют ассистентам в течение первого часа занятий. На втором часу наставник записывает правильные решения на доске и объясняет их. С течением времени ученики начинают самостоятельно объяснять свои решения остальной группе.

Я наблюдала, как младшие ученики сражались со следующей задачей: "В классной комнате находятся шесть человек. Докажите, что среди них должны быть по меньшей мере трое, ни один из которых не знает другого, или же трое, знакомые друг с другом". Ассистенты советуют детям нарисовать следующую схему:

 

Двое из шести детей, корпевших над задачей, поняли, что рисунок можно дополнить одним из трех способов:

или:

Задача, с которой успешно справились эти двое, заключалась в том, чтобы графическим, а потому неопровержимым путем показать, что должно быть по крайней мере трое людей, ни один из которых не знает другого, или же, напротив, знакомых друг с другом. Слушать детей, впервые пытавшихся артикулировать свои мысли, было мучительно.

Математикам эта задача известна как головоломка о вечеринке. В более общем виде она выглядит так: сколько людей следует пригласить на вечеринку, чтобы по крайней мере т гостей оказались знакомы друг с другом или по крайней мере п гостей не были знакомы друг с другом. Эта головоломка является частным случаем теории Рамсея — системы теорем,сформулированных английским математиком Фрэнком Рамсеем. Большинство подобных задач касаются числа элементов, нужного, чтобы удовлетворять определенным условиям. Сколько детей должно быть у женщины, чтобы двое из них наверняка оказались одного пола? Трое. Сколько людей должно прийти на вечеринку, чтобы по крайней мере трое из них не знали (или, напротив, знали) друг друга? Шестеро. Сколько голубей нужно, чтобы по меньшей мере в одном гнезде оказались два или более голубей? На одного больше, чем число гнезд.

Дети — по крайней мере некоторые — со временем узнают о теории Рамсея. Сейчас же они учатся смотреть на мир так, чтобы заинтересоваться этой теорией и вообще увидеть порядок в неупорядоченном мире. Для подавляющего большинства школьники или гости вечеринки — только люди. Математики же видят в них элементы структуры, а в их взаимоотношениях — закономерности. Большинство учителей математики, кажется, верят в то, что некоторые дети изначально предрасположены к поиску взаимосвязей. Выделив этих детей, их нужно обучать и развивать их странную способность видеть треугольники и шестиугольники там, где все остальные видят просто вечеринку.

Быстрый переход