Мне трудно объективно оценить, хорошо это или плохо. Тесная связь между теорией и экспериментом, которая в прежние времена направляла развитие физики, сегодня резко ослабла, после того как физики сделали ставку на возможность объединения всех физических взаимодействий, включая гравитацию.
В физике, а конкретно в астрономии, уже на другом конце шкалы расстояний — на космологических масштабах — существует еще одна проблема, бросающая вызов ученым в течение уже почти ста лет. Теория слабого взаимодействия Ферми — не единственная теория, требующая «лечения» при высоких энергиях и на малых расстояниях. Другой такой теорией является общая теория относительности. При попытке соединить теорию гравитации с квантовой механикой возникают многочисленные проблемы. Главной из них является проблема расходимости решения при попытке учесть влияние всех виртуальных частиц, которая становится непреодолимой на расстояниях, примерно на девятнадцать порядков меньших, чем размер протона. Как и теория Ферми, общая теория относительности не представляется теорией, которая в ее нынешнем виде может быть последовательно согласована с квантовой механикой. Возможно, что нам опять потребуется придумывать какую-то новую физику, которая способна изменить поведение теории на таких малых масштабах.
Наиболее популярным кандидатом на роль этой новой физики сегодня является теория струн. На таких расстояниях, где взаимодействие виртуальных частиц становится столь запутанным, что делает невозможным построение квантовой гравитации, теория струн дает нам новый математический аппарат, позволяющий избежать указанных проблем. Более того, гравитация сама естественным образом «возникает» в самом основании теории струн. Единственная загвоздка состоит в том, что струны как квантовые объекты не имеют никакого смысла в четырех измерениях. Для получения последовательной теории пространство, в котором «живут» струны, должно иметь по крайней мере десять, а лучше — одиннадцать измерений, шесть или семь из которых являются скрытыми.
После своих первых успехов теория струн была разрекламирована как Теория всего, или, используя более актуальное для нас определение, как Окончательная физическая теория. Она претендовала на роль действительно фундаментальной теории, применимой на всех уровнях. Новые симметрии должны были положить конец масштабной зависимости теории, которая теперь могла стать действительно полной, то есть не требовать введения новой физики на малых масштабах и естественным образом переходить в классическую физику на больших.
В то время, когда делались все эти оптимистические заявления, многие из нас были настроены скептически, и до настоящего времени этот скептицизм остается оправданным. Сегодня уже ясно, что сами струны не являются кирпичиками нашего мира и должны быть заменены еще более фундаментальными объектами, требующими для своего описания еще большего числа измерений пространства. Кроме того, даже после 30 лет неимоверных усилий выдающихся теоретиков прогресс, достигнутый в теории струн, остается, мягко говоря, скромным. Теория струн пока что является скорее надеждой на теорию, чем фактической теорией, и помимо теоретических соображений нет никаких других доказательств, что теория струн вообще имеет что-то общее с реальным миром.
Любая Теория всего, помимо прочего, должна отвечать и на главный вопрос, который очень интересовал Эйнштейна и не меньше интересует меня: возможен ли какой-либо произвол при создании Вселенной? А именно существует ли только один возможный непротиворечивый набор физических законов, такой, что если изменить любой из них, то все мироздание неминуемо рухнет? Надежда получить точный и обоснованный ответ на этот вопрос вдохновляла исследователей на протяжении столетий, и первые успехи теории струн, казалось, свидетельствовали о том, что эта надежда вот-вот воплотится в реальность.
Существует еще одна возможность, и удивительно, как много теоретиков ухватились за нее, когда стало понятно, что теория струн не является уникальной теорией. |