Изменить размер шрифта - +
А когда игроки осознают, что их соперники, будучи рациональными, не выберут доминируемые стратегии, исходя из такого общего знания можно выполнить итеративное исключение доминируемых стратегий. Лучшее ли это из доступных действий? Нет. Можно продолжить дальнейшее исключение стратегий, воспользовавшись несколько более сильным свойством, чем доминируемость в чистых стратегиях. Оно определяет стратегии, которые не могут быть наилучшим ответом. Стратегии, оставшиеся после такой процедуры исключения, называются рационализируемыми, а сама концепция — рационализацией.

Зачем вводить эту дополнительную концепцию, и что она нам дает? Что касается первого вопроса, полезно знать, насколько можно сузить совокупность возможных исходов игры на основании одной лишь рациональности игроков, не прибегая к правильности ожиданий относительно фактического выбора игрока. Иногда можно определить, что игрок не выберет то или иное действие или действия, даже если нельзя вычислить, какое именно действие он все же выберет. Ответ на второй вопрос зависит от контекста. Порой рационализация вообще не позволяет сократить совокупность исходов игры. Именно так было в примере три на три, представленном на . Подчас рационализация позволяет это сделать только до определенной степени, но не до равновесия Нэша, если оно в игре всего одно, или не до совокупности равновесий Нэша, если их в игре несколько. Примером такой ситуации может служить расширенный до матрицы четыре на четыре предыдущий пример, который рассматривается в  ниже. Иногда сокращение совокупности возможных исходов игры приводит к определению единственного равновесия Нэша, причем в подобных случаях мы имеем его более веское обоснование, опирающееся исключительно на рациональность, без предположений о правильности ожиданий. Ниже в  представлен пример игры с конкуренцией по количеству, в котором аргументация на основе концепции рационализации позволяет найти в ней единственное равновесие Нэша.

Рассмотрим игру на рис. 5.6, аналогичную той, что приведена на , но с дополнительной стратегией на каждого игрока. Как отмечалось выше, девять комбинаций стратегий, в которые входит одна из первых трех стратегий для каждого из игроков, можно обосновать посредством цепочки убеждений игроков в отношении убеждений друг друга. Это верно и в увеличенной матрице. Но подходит ли такой способ для стратегий R4 и C4?

 

Рис. 5.6. Рационализируемые стратегии

 

Может ли Строка исходить из убеждения, что Столбец выберет стратегию C4? В его основе должны лежать убеждения Столбца в отношении выбора Строки. Могут ли они сделать стратегию С4 наилучшим ответом Столбца? Нет. Если Столбец полагает, что Строка сыграет R2, его наилучший ответ С2. Если Столбец считает, что Строка предпочтет R3, то его наилучший ответ С3. А если Столбец убежден, что Строка выберет R4, тогда его наилучший ответ либо С1, либо С3. Следовательно, С4 не может быть наилучшим ответом Столбца. Это означает, что Строка, зная о рациональности Столбца, ни в коем случае не припишет ему выбор стратегии С4. Стало быть, Строка не должна исходить из убеждения, что Столбец сыграет С4.

Обратите внимание, что хотя стратегия С4 не может быть наилучшим ответом, она не является доминируемой по отношению к стратегиям С1, С2 и С3. Для Столбца она предпочтительнее стратегии С1 против стратегии Строки R3, предпочтительнее стратегии С2 против стратегии Строки R4 и предпочтительнее стратегии С3 против стратегии Строки R1. Если стратегия все же доминируемая, она тоже не может быть наилучшим ответом. Таким образом, «стратегия, которая не может быть наилучшим ответом», — более общая концепция, чем «доминируемая стратегия». Исключение таких стратегий возможно даже тогда, когда исключение доминируемых стратегий невозможно. Следовательно, исключение стратегий, которые не могут быть наилучшим ответом, способно сузить совокупность вероятных исходов игры в большей степени, чем исключение доминируемых стратегий.

Быстрый переход