Изменить размер шрифта - +
Конечно, все эти порой очень непохожие друг на друга организмы возникли не на пустом месте, а в результате многочисленных последовательных изменений ДНК предковых видов. Эти изменения в ДНК происходят и сейчас, у нас на глазах.

Все организмы являются генетически модифицированными относительно своих предков. Это утверждение справедливо и для человека. Как уже упоминалось, между мной, вами и любым другим представителем вида Homo sapiens, за исключением однояйцовых близнецов, найдется около трех миллионов генетических отличий. Именно столько отличий было обнаружено, когда в 2007 году прочитали один из первых полных геномов отдельного человека, ученого Крейга Вентера<sup>95</sup>, и сравнили хромосомы, которые он унаследовал от мамы и папы. Три миллиона – это только число точечных одиночных отличий лишь в один нуклеотид, не считая различных хромосомных перестроек, вставок и делеций участков ДНК. Учитывая, что на Земле живут миллиарды людей, будет сложно указать такой участок генома, который не претерпел бы изменений хотя бы у одного живого человека (если не считать участков, мутации в которых несовместимы с жизнью).

Упомянутые миллионы отличий появились не сразу, а накапливались на протяжении длительного времени. У человека в каждом поколении возникают десятки новых мутаций<sup>103</sup>. Ребенок не только получает некую уникальную комбинацию генетических вариантов от родителей, но еще около пятидесяти совершенно новых генетических вариантов, которых ни у кого из родителей не было.

Мутации в ДНК человека и представителей других видов неизбежны по целому ряду причин. Во-первых, фермент ДНК-полимераза, копирующий наследственную информацию, не умеет работать без ошибок: время от времени в растущую цепочку ДНК встраиваются неправильные нуклеотиды. Существуют разные ДНК-полимеразы, отличающиеся своей точностью, но даже самые надежные из них ошибаются хотя бы раз при копировании миллиона нуклеотидов<sup>104</sup>. Если бы не существовало никаких дополнительных механизмов устранения ошибок при синтезе ДНК, копирование столь крупного генома, как у человека, приводило бы к тысячам ошибок и возможность нашего существования была бы под вопросом.

К счастью, основные ДНК-полимеразы умеют отщеплять неправильно присоединенные нуклеотиды и исправлять собственные ошибки. Этот механизм тоже не абсолютно точный, но он снижает количество ошибок на порядок или, может быть, на два. Но сотни ошибок при каждом делении клеток – это все равно недопустимо много, особенно учитывая, как часто происходит деление. Для устранения нераспознанных ошибок существует система репарации – механизм, устраняющий неправильно спаренные нуклеотиды в двойной спирали молекулы ДНК.

Если в результате ошибки ДНК-полимеразы к растущей цепи молекулы ДНК был присоединен неправильный нуклеотид, возникает ситуация, когда стоящие друг напротив друга нуклеотиды в двойной спирали уже не являются комплементарными. Напротив А может стоять G, а не T, или напротив G – T, а не C. Это приводит к деформации молекулы ДНК. Специальные белки распознают подобные деформации и заменяют один из двух нуклеотидов таким образом, чтобы пара стала комплементарной (А напротив T, G напротив С). Разумеется, в этом процессе ферменты тоже могут ошибиться: оставить неправильный нуклеотид, а правильный заменить. В этом случае мутацию будет уже очень сложно устранить, ведь после такого исправления мы все равно получим комплементарную пару нуклеотидов. К счастью, система репарации умеет худо-бедно различать старую цепочку молекулы ДНК и вновь синтезированную и предпочитает сохранять старый вариант пары нуклеотидов. Но и этого недостаточно, чтобы полностью избежать мутаций.

Хорошая новость состоит в том, что для передачи по наследству мутация должна произойти не в любой клетке, а в клетке зародышевой линии, то есть либо в половой клетке, либо в клетке, которая впоследствии станет половой (после делений).

Быстрый переход