Их «кладовая» – это вращение нейтронной звезды. Со временем период, за который компактный объект совершает оборот вокруг своей оси, растет. А энергия вращения обратно пропорциональна квадрату этого периода. Если мы начинаем с одной миллисекунды, то запас соответствует излучению с солнечной светимостью на протяжении 100 миллиардов лет! Неудивительно, что молодые сильно замагниченные нейтронные звезды, быстро «разбазаривающие» предоставленную им звездой-прародительницей энергию вращения, являются очень яркими источниками. Настоящая «золотая молодежь».
Причем быстрое вращение – это не единственное их наследство. Они еще и рождаются очень горячими. Запасов тепловой энергии тоже может хватить надолго. Именно благодаря расходованию ими запасенного тепла мы видим некоторые компактные объекты в остатках сверхновых.
Многообразие процессов с мощным выделением энергии дает разнообразные наблюдательные проявления. Поэтому ученые разными способами пытаются изучать нейтронные звезды. Используются самые разнообразные инструменты. Это и радиотелескопы – люди изучают радиопульсары и другие проявления нейтронных звезд в самой длинноволновой части спектра. Это и рентгеновские телескопы, потому что, когда энергии много, температура большая, то обычно испускается жесткое излучение. Это легко понять. Если вам нужно унести сто долларов, вы можете взять одной стодолларовой бумажкой или ста бумажками по одному доллару. Положить в карман. Мелкие даже удобнее. Но если вам надо унести сто миллионов долларов, то попробуйте посчитать, сколько это будет купюрами по одному доллару – будет несколько мешков. Столько не унести. Поэтому нужно брать крупными купюрами. Даже есть специальные купюры – тысячедолларовые, которые в магазинах не принимают. В природе все устроено точно так же. Когда в маленькой области пространства выделяется очень много энергии, то ее уносит самыми «жирными» рентгеновскими или гамма-квантами. И в нейтронных звездах это часто происходит. Они маленькие и компактные. И когда они светят, энергия уносится рентгеновским или гамма-излучением. (Продолжая аналогию, можно заметить, что для хищений в особо крупных размерах используют разные теневые схемы без участия наличных, а нейтронные звезды, когда энергии очень много, теряют ее за счет испускания нейтрино, крайне плохо взаимодействующих с веществом и поэтому способных незаметно покидать недра компактных объектов.)
Сейчас, в первую очередь благодаря росту мощности компьютеров, ученые активно продвигаются в этом направлении. Правда, наблюдатели постоянно подкидывают все новые и новые загадки, обнаруживая все более и более странные сверхновые. Но даже если взрыв смоделирован успешно, это надо сравнивать с разнообразными наблюдениями.
Нейтронные звезды, рожденные в процессе взрыва ядра звезды, несут на себе его отпечаток. Например, они могут очень быстро двигаться. Представьте, у вас есть компактный объект диаметром 20 километров с массой раза в два больше, чем у Солнца, а лететь он может со скоростью несколько тысяч километров в секунду. Хотя до взрыва скорость звезды-прародителя составляла всего лишь 10 км/с, т. е. она практически покоилась относительно своих соседей. Такая ситуация возможна, потому что если мощный взрыв чуть-чуть сделать несимметричным, то отдача заставит образовавшийся компактный объект быстро двигаться. Энергии хватит. И это тоже надо воспроизводить в расчетах. Нужно, чтобы модели рождения нейтронных звезд, т. |