Это излучение, которое многократно поглощается и вновь переизлучается, позволило построить карту распределения межзвездного водорода в Галактике путем исследований в полосе частот от 1419 до 1421 МГц. Но за пределами этой довольно узкой полосы условия гораздо лучше. Как мы уже упоминали, на частотах несколько выше или несколько ниже 1420 МГц сравнительно немногие атомы и молекулы служат естественным источником помех для радиосигналов. Однако приходится считаться и с шумами, создаваемыми человеком: только обеспечив надежную защиту от помех в полосе шириной несколько мегагерц вокруг частоты 1420 МГц, радиоастрономы смогли продолжить свою работу на Земле!
Предположим, что наша или любая другая цивилизация по «естественным» причинам выбрала частоту вблизи 1420 МГц для межзвездной связи. Допустим также, что эта частота используется для местной связи и мы можем надеяться «подслушать» иные цивилизации на этой частоте. Тогда нам все же предстоит столкнуться с важной проблемой: на какой именно частоте, близкой к 1420 МГц, передается послание, чтобы можно было точно настроить наши приемники? Искать ли нам в области более высоких или более низких частот?
Если исходить из представлений, что вода играет важную роль для большинства других форм жизни, как и для нас, то можно признать справедливость предложения, высказанного американским физиком Бернардом Оливером. Поскольку каждую молекулу воды Н20 можно представить в виде Н + ОН, Оливер указал, что диапазон частот между 1420 и 1612 МГц — наиболее подходящий канал для межзвездной связи. Если важность воды осознают все формы жизни, то из того факта, что ее молекула является суммой Н + ОН, можно заключить, что просвет между 1420 и 1612 МГц — это именно тот диапазон частот, в котором должна осуществляться межзвездная связь. Оливер называет эту полосу «водяной ямой», в которой галактические цивилизации общаются друг с другом.
Где ищем?
Соседние звезды, похожие на Солнце, предоставляют наилучшие шансы для обнаружения других цивилизаций, поскольку интенсивность радиосигналов, излученных любой цивилизацией, падает пропорционально квадрату расстояния. Однако радиотелескопы, направленные на тау Кита и эпсилон Эридана, не зарегистрировали каких-либо сигналов, свидетельствующих о существовании там цивилизаций. Следовательно, нужно приступить к длительному поиску и исследовать звезду за звездой, прежде чем появится шанс обнаружить ближайшие цивилизации.
Какие звезды следует изучить первыми?
При прочих равных условиях поток радиоволн от ближайших цивилизаций будет интенсивнее, чем от удаленных. При удвоении расстояния от заданного источника интенсивность радиосигналов, то есть поток радиоизлучения, достигающий каждой конкретной антенны за одну секунду, уменьшится в четыре раза. Это важнейшее обстоятельство заставляет прежде всего направить антенны на ближайшие звезды, а затем на более удаленные. И вновь возникает вопрос: какие из этих миллионов звезд заслуживают особого внимания?
Исходя из очевидных фактов, легко сделать следующий вывод: ни одна из звезд не заслуживает особого внимания, хотя одиночные звезды кажутся более подходящими кандидатами, чем двойные и кратные системы. Звезды, светимость которых близка к солнечной, предпочтительнее звезд с низкой светимостью, таких как звезда Барнарда, поскольку у слабых звезд маленькие экосферы. Если ограничиться звездами, светимость которых составляет не менее 1 % светимости Солнца, то нужно исключить 80 % звезд нашей Галактики — но оставшиеся 20 % все же составят 80 миллиардов звезд, в том числе много сотен тысяч звезд в пределах чувствительности наших приемников. Конечно же, следует отбросить и звезды наибольшей светимости с временем жизни менее 1 миллиарда лет, то есть того минимального срока, который, как считается, необходим для развития жизни и цивилизации. Однако таких звезд всего лишь около 1 % в Галактике, так что мы немного выиграем, исключив их з нашего поиска. |