Изменить размер шрифта - +
Эти фильтры удовлетворительно задерживают пыль, но именно поэтому их потом трудно очищать. Приходится часто отключать фильтр и подолгу продувать его в обратном направлении, чтобы выбить пыль. Как быть?

Задача была решена так: в качестве фильтра стали использовать ферромагнитный порошок, помещенный между полюсами магнита и образующий пористую структуру. Отключая и включая магнитное поле, можно эффективно управлять фильтром. Поры фильтра могут быть маленькими (когда ловят пыль) и большими (когда идет очистка фильтра).

В условиях этой задачи уже описана вепольная система: есть В1 (пыль), есть В2 (пакет ткани), есть П (механическое поле сил, создаваемых потоком воздуха). Решение состоит в том, что:

- В2 раздробили в ферромагнитный порошок Вф;

- действие поля П направили не на В1 (изделие), а на Вф (инструмент);

- само поле стало не механическим (Пмех.) а магнитным (Пм).

Это можно записать так:

 

 

Сильное решение получено благодаря тому, что реализовано правило развития веполей: с увеличением степени дисперсности В2 (инструмента) эффективность веполя повышается; действие поля на В2 (инструмент) эффективнее действия на В1 (изделие); электрические (электромагнитные, магнитные) поля в веполях эффективнее неэлектрических (механических, тепловых и т. д.). Действительно, едва ли надо доказывать, что чем меньше частицы В2, тем более гибким может быть управление инструментом. Очевидно также, что выгоднее менять инструмент (это зависит от нас), а не изделие (зачастую являющееся природным объектом). Порознь целесообразность этих преобразований очевидна, но сила правила заключается в использовании системы преобразований.

Задача 13 на протяжении ряда лет применялась в качестве учебной на занятиях в общественных школах изобретательского творчества. Решая ее в начале учебы, слушатели ни разу не давали верного ответа. После изучения вепольного анализа задача без затруднений решалась практически всеми - научными работниками, инженерами, студентами, школьниками.

Вернемся теперь к задаче 6, которая также широко использовалась при обучении ТРИЗ. Вот запись, сделанная опытным конструктором в первый день занятий:

«1-й путь - построить необходимое количество площадок. Кажущаяся простота и получаемая исчерпываемость результатов, Однако на самом деле - дороговизна осуществления (строительство), сложность эксплуатации. Таким образом, этот путь нецелесообразен.

2-й путь - имитация только экстремальных условий: наиболее благоприятных для эксплуатации тракторов и наименее благоприятных, т. е. создание на уже имеющейся площадке двух участков с соответствующими качествами грунтов.

Принимаю 2-й путь и как вариант - площадку с тремя участками: наилучшие условия, наихудшие и средние».

Ход решения и полученный ответ весьма характерны для обычного конструкторского мышления. Сначала рассмотрен прямой путь - построим необходимое количество площадок. Здесь очевидное техническое противоречие: выигрыш в качестве испытаний и проигрыш в сложности и дороговизне строительства. Конструктор ищет компромисс, нет стремления преодолеть противоречие. Выдвигается 2-й вариант: ограничимся двумя-тремя площадками. Но и здесь имеется техническое противоречие: проигрыш в качестве испытаний (2 площадки вместо 200!) и выигрыш в простоте и дешевизне. И снова нет попытки преодолеть противоречие. Второй вариант представляется более приемлемым (дешевизна!) - и выбор сделан...

Ни один из решавших эту задачу конструкторов (в их числе были и весьма опытные изобретатели, имевшие по 30-50 авторских свидетельств) не смог дать удовлетворительного решения. После освоения ТРИЗ слушатели общественных школ (включая студентов и школьников) без затруднений решали эту задачу.

Типичная запись решения: «Много общего с задачей о магнитном фильтре. В1 - почва. Введем В2 в виде ферромагнитного порошка. Используем для достройки веполя магнитное поле Пм.

Быстрый переход