Эффективность решения (а. с. № 552 245) достигнута совместным применением двух стандартов; использованы шарики-амортизаторы и обеспечено управление ими.
ЗА ДЕРЕВОМ - ЛЕС
Наиболее сильные средства решения задач (вепольный анализ, стандарты) одновременно являются инструментами для выявления новых задач. Прогностическая функция присуща и приемам, используемым на шаге 6.3. Рассмотрим это на конкретном примере.
Допустим, впервые создан электромагнитный измеритель (расходомер) потока электропроводной жидкости. Принцип устройства такого расходомера весьма прост (рис. 16. а ): в измеряемый поток (П) введены электроды (Э), снаружи расположена магнитная система (М), создающая магнитное поле; поток пересекает магнитные силовые линии, и на электродах возникает электродвижущая сила. Если теперь поставить задачу: «Предложите новые конструкции электромагнитных расходомеров», поиск методом проб и ошибок не даст быстрых результатов, потому что неизвестно, как менять имеющуюся схему. Используем простейший при- ем - перестановку частей. Структуру исходной конструкции можно записать так: МЭПЭМ. В центре - поток, с обеих сторон потока - электроды, снаружи - магнитная система. Очевидно, путем перестановки частей можно получить еще пять конструкций; ЭМПМЭ (рис. 16, б ); ПМЭМП (рис. 16, в ); МПЭПМ (рис. 16, г ); ЭПМПЭ (рис. 16, д ); ПЭМЭП (рис. 16, е ).
К моменту, когда такой морфологический анализ провели впервые, были известны только лотковый расходомер по схеме МЭПЭМ и лаг (измеритель скорости) со схемой ПЭМЭП. Четыре схемы оказались новыми, имеющими свои особенности и преимущества. Например, схема МПЭПМ позволяет измерять локальный расход по ширине потока. Лаг по схеме ПМЭМП работает на внутреннем магнитном поле соленоида и потому более чувствителен, чем лаг по схеме ПЭМЭП, работающий на поле рассеяния.
Таким образом, даже простейшие приемы (перестановка частей) могут быть использованы не только как решения задач, но и для выявления области применения полученного принципа, т. е. в целях прогнозирования.
Рис. 16.
Рассмотрим, например, магнитный фильтр (задача 13). Он включает магнитную систему (М), ферромагнитный порошок (Ф), сквозь который проходит поток запыленного воздуха (обозначим этот поток буквой И - изделие). Структура фильтра МФИФМ.
Ясно, что возможны еще пять структур: ФМИМФ; ИМФМИ; МИФИМ; ИФМФИ; ФИМИФ.
Например, «Электромагнитный фильтр, о т л и ч а ю щ и й с я тем, что с целью снижения удельного расхода энергии и увеличения производительности фильтрующий элемент из зернистого магнитного материала размещен вокруг источника магнитного поля и образует внешний замкнутый магнитный контур» (а. с. № 319 325). Это изобретение (магнит внутри) появилось только через семь лет после того, как был изобретен обычный фильтр (магнит снаружи) ...
Будем считать шесть возможных структур прографкой таблицы, а в боковик запишем пять возможных состояний изделия: газ, жидкость, твердое тело (например, стальной стержень), эластичное тело (резина), порошок. Получится таблица. содержащая 30 клеток, причем в них окажутся не только схемы фильтров, но и схемы иных по функциям технических систем. Например, в клетку на пересечении колонки «МФИФМ» и строки «твердое тело» можно поместить изобретение по а. с. № 499 912: «Способ бесфильерного волочения стальной проволоки, включающий деформацию растяжением, отличающийся тем, что с целью получения проволоки постоянного диаметра необходимую деформацию осуществляют путем протягивания проволоки через ферромагнитную массу, помещенную в магнитном поле». В патенте ЧССР № 105 766 описана магнитная пробка, установленная в картере двигателя для вылавливания частиц металла из масла: структура ИФМФИ, агрегатное состоящие изделия (масло) - жидкость.
В таблице использованы только два приема: перестановка частей и изменение агрегатного состояния изделия. |