Изменить размер шрифта - +
Там же приводятся правила проверки делимости на 3, 5, 7 и 11. Четко прописаны функции нуля как самостоятельной цифры. В «Биждаганите» мы находим способы решения уравнений. «Сиддханта-широмани» связана с тригонометрией: здесь есть таблицы синусов и различные тригонометрические соотношения. Репутация Бхаскари была столь прочной, что его книги переиздавали вплоть до начала XIX в.

 

ЧТО ДАВАЛА АРИФМЕТИКА ИМ

Самый древний из дошедших до нас математических текстов Китая – книга, отредактированная Чжан Цаном и датируемая примерно 100 г. н. э. Типичная задача такова: «Два с половиной пикуля риса были куплены за <sup>3</sup>/<sub>7</sub> ляна серебра. Сколько пикулей можно купить за 9 лянов?» Предполагаемое решение использует математический принцип, названный средневековыми математиками тройным правилом. В современных обозначениях, взяв за х неизвестное искомое количество, найдем:

откуда x = 52<sup>1</sup>/<sub>2</sub> пикуля. Пикуль – мера веса, приблизительно равная 60,5 кг.

 

Индийская система

 

Индийская система начала распространяться по арабскому миру еще до того, как полностью сформировалась на родине. Ученый Север Себохт так описывал ее использование в Сирии в 662 г.: «Я опущу все дискуссии о науке в Древней Индии ‹…› об их превосходных открытиях в астрономии ‹…› и других ценных методах вычисления ‹…› я хочу лишь сказать, что все эти вычисления были сделаны при помощи девяти цифр».

В 776 г. при дворе Великого халифа появляется путешественник из Индии и демонстрирует свои способности в сиддханта – методе подсчетов, а также в тригонометрии и астрономии. Судя по всему, основой его вычислений служила «Брахма-спхута-сиддханта» Брахмагупты, написанная в 628 г., но в любом случае его труд был прекрасно переведен на арабский.

На первых порах индийской системой пользовались только ученые, и лишь позже этот метод стал распространяться в арабском деловом сообществе, а потом и в быту, вплоть до 1000 г. Но изданный в 825 г. труд Аль-Хорезми «Книга об индийском счете» принес индийской системе широкую известность в арабском мире. Четырехтомный труд другого математика, Аль-Кинди, «О применении индийской арифметики» (830) укрепил уверенность ученых в возможности записать любое число при помощи всего десяти цифр.

 

Темные века

 

Арабский и индийский мир делали выдающиеся шаги как в математике, так и в остальных науках, а Европу охватил период относительного застоя, хотя Средние века всё же нельзя назвать темными временами в полном смысле. Было заметно продвижение вперед, но медленное и будто нерешительное. Скорость изменений стала нарастать с момента, когда в Европе распространились научные открытия Востока. Из европейских стран Италия расположена ближе всего к арабскому миру, и вполне естественно, что достижения соседей, умудренных в математике, попадали в Европу через Италию. Венеция, Генуя и Пиза уже в то время были важными центрами торговли, и купеческие корабли ходили отсюда до Северной Африки и восточного побережья Средиземноморья. Они активно обменивали европейскую шерсть и древесину на шелк и специи.

Помимо торговли в прямом смысле – материальными ценностями, – не менее активно велись и «продажи» научных идей. Именно по торговым путям в Европу проникли арабские открытия в математике и других науках, зачастую передаваемые из уст в уста. Благодаря торговле Европа добилась процветания, на смену бартеру пришли деньги, система расчетов, вкладов и пошлин стала намного сложнее. Эквивалентом карманному калькулятору того времени был абак – простые счеты, где костяшки на проволоке изображали числа.

Быстрый переход