Существует две разновидности неевклидовой геометрии: эллиптическая и гиперболическая.
Непрерывное преобразование. Преобразование пространства, при котором точки, расположенные очень близко друг к другу, не растаскиваются на большое расстояние.
Неприводимый многочлен. Многочлен, который нельзя получить при перемножении двух многочленов меньших степеней.
Неустойчивое состояние. Состояние динамической системы, к которому она не может вернуться после небольшого возмущения.
Неустранимая конфигурация. Элемент списка подсетей, по крайней мере одна из которых должна обязательно присутствовать в любой сети на плоскости.
NP-полная задача. Конкретная задача NP-класса, такая что если для ее решения существует алгоритм класса P, то любая задача класса NP может быть решена при помощи алгоритма класса P.
Нуль (функции). Если f — функция, то x является нулем f, если f (x) = 0.
Общая теория относительности. Теория гравитации Эйнштейна, в которой сила тяготения рассматривается как кривизна пространства-времени.
Оператор. Особый вид функции A, который при приложении к вектору v дает другой вектор Av. Должен удовлетворять условиям линейности: A(v + w) = Av + Aw и A (av) = aA(v) для любой постоянной a.
Оптимизация. Нахождение максимума или минимума некой функции.
Ось вращения. Фиксированная прямая, вокруг которой вращаются объекты.
Отношение. Отношение двух чисел a и b есть a/b.
Параллельный перенос. Преобразование пространства, при котором все точки сдвигаются в одном и том же направлении на одно и то же расстояние.
Переменная. Величина, которая может принимать любое значение в определенных пределах.
Периодичность. Бесконечная повторяемость одного и того же поведения.
Петля. Замкнутая кривая в топологическом пространстве.
Пифагорова тройка. Три натуральных числа a, b, c, такие что a² + b² = c². К примеру, a = 3, b = 4, c = 5. По теореме Пифагора такие числа образуют стороны прямоугольного треугольника.
Плоский тор. Тор, полученный отождествлением противоположных сторон квадрата, естественная геометрия которого имеет нулевую кривизну (см. рис. 12).
Поверхность. Форма в пространстве, полученная путем объединения областей, топологически эквивалентных внутренней части круга. Примеры: сфера и тор.
Показатель степени. Число, показывающее, в какую степень возводится переменная x. Для x<sup>7</sup> показатель степени −7.
Поле скоростей. Функция, определяющая вектор скорости в каждой точке пространства. К примеру, в потоке жидкости вектор скорости может быть определен в каждой точке, и, как правило, в разных точках он разный.
Порядок кривой. Число раз, которые кривая оборачивается против часовой стрелки вокруг выбранной точки.
Последовательность. Список чисел в определенном порядке. К примеру, последовательность 1, 2, 4, 8, 16… степеней двойки.
Постоянная Эйлера. Специальное число, обозначаемое γ и приблизительно равное 0,57721 (см. прим. 41).
Построение при помощи линейки и циркуля. Любое геометрическое построение, которое можно реализовать при помощи только неразмеченной линейки и циркуля-измерителя (строго говоря, двух измерителей).
Поток Риччи. Уравнение, описывающее изменение кривизны пространства во времени.
Правильный многогранник. Многогранник, граница которого состоит из одинаковых правильных многоугольников, одинаково организованных возле каждой вершины. Евклид доказал, что существует ровно пять правильных многогранников.
Правильный многоугольник. Многоугольник, у которого все стороны имеют одинаковую длину, а все углы равны (см. рис. 4).
Преобразование. Еще одно слово, обозначающее «функцию»; используется обычно в тех случаях, когда задействованные переменные представляют собой точки в некотором пространстве. |