Изменить размер шрифта - +
Между тем Галуа во что бы то ни стало хотел поступить туда не только потому, что это было самое лучшее учебное заведение, но и потому, что оно славилось как центр республиканцев. Через год Эварист Галуа предпринял еще одну попытку поступить в École Polytechnique, и снова на устном экзамене по математике «скачки» в логике его рассуждений только смутили экзаменатора месье Дине. Чувствуя, что он на грани второго провала, и разочарованный тем, что его блестящие способности не получили должного признания, Галуа вышел из себя и швырнул в Дине тряпкой. Бросок оказался точным. Больше Галуа никогда не возвращался в священные аудитории École Polytechnique.

Неудачи на вступительных экзаменах не поколебали уверенность Галуа в своем математическом таланте, и он продолжал свои приватные исследования. Его основной интерес был сосредоточен на решении алгебраических уравнений. Как известно, квадратные уравнения имеют вид

 

ax<sup>2</sup> + bx + c = 0,

где a, b и c могут иметь любые значения. Задача состоит в том, чтобы найти такие значения x, которые удовлетворяют этому квадратному уравнению. Метод проб и ошибок не удовлетворяет математиков. Они предпочитали бы иметь рецепт, позволяющий находить решения, и к счастью такой рецепт действительно существует:

Подставляя значения a, b и c в эту формулу, мы получаем правильные значения x. Например, приведенный выше рецепт можно применить к уравнению

2x<sup>2</sup>–6x + 4 = 0,

где a=2, b=–6 и c=4. Подставляя значения a, b и c, мы получаем x=1 или x=2. Квадратные уравнения — это частный случай гораздо более широкого класса уравнений, известных под названием полиноминальных. Полиноминальным уравнением более сложным, чем квадратное, является кубическое уравнение

ax<sup>3</sup> + bx<sup>2</sup> + cx + d = 0.

Дополнительное осложнение возникает из-за члена ax<sup>3</sup>. Добавляя еще один член, x<sup>4</sup>, мы получаем еще один вид полиноминального уравнения, известного как уравнение четвертой степени:

ax<sup>4</sup> + bx<sup>3</sup> + cx<sup>2</sup> + dx + e = 0.

К началу XIX века математикам были известны рецепты, позволяющие находить решения кубических уравнений и уравнений четвертой степени, но не был известен метод решения уравнений пятой степени

ax<sup>5</sup> + bx<sup>4</sup> + cx<sup>3</sup> + dx<sup>2</sup> + ex + f = 0.

Галуа увлекся идеей найти рецепт для решения уравнений пятой степени. Это была одна из наиболее трудных проблем современной ему математики. К тому времени, когда Галуа исполнилось семнадцать лет, он сумел продвинуться в решении этой проблемы настолько, что представил Академии наук два мемуара с результатами своих исследований. Рецензентом, которому мемуары поступили на отзыв, был Огюстен Луи Коши — тот самый, кто много лет спустя вступит в полемику с Ламе по поводу пробела в доказательстве Великой теоремы Ферма. Работы юного Галуа произвели на Коши сильное впечатление, и он счел, что мемуары Галуа заслуживают быть представленными на премию Академии по математике. Чтобы удовлетворить формальным требованиям, предъявляемым к работам, представленным на конкурс, оба мемуара следовало объединить в один, поэтому Коши ввернул работы Галуа и стал ожидать, когда тот подаст их уже в виде одного мемуара.

После несправедливой критики преподавателей лицея и двукратного провала на вступительных экзаменах в École Polytechnique гений Галуа был уже на грани признания, но ряд личных и профессиональных трагедий, пережитых им в следующие три года, поставили крест на его честолюбивых замыслах. В июле 1829 года в городок Бур-ля-Рейн, мэром которого все еще оставался отец Галуа, прибыл новый священник-иезуит. Он с неодобрением отнесся к республиканским симпатиям мэра и начал кампанию по смещению того с поста, распространяя всяческие дискредитирующие мэра слухи.

Быстрый переход