На первый взгляд не должно быть никаких причин, по которым Коши и Ламе не могли бы использовать единственность разложения на множители в своих рассуждениях, как это делали сотни математиков до них. Однако, оба представленных Академии доказательства использовали мнимые числа. Куммер обратил внимание Лиувилля на то, что, хотя теорема о единственности разложения на множители выполняется для целых чисел, она не обязательно должна выполняться, если используются мнимые числа. По мнению Куммера, это была роковая ошибка.
Например, если мы ограничимся целыми числами, то число 12 допускает единственное разложение 2·2·3. Но стоит нам допустить в доказательстве мнимые числа, как число 12 можно разложить на множители и так:
12 = (1 + √–11)·(1 + √–11).
Здесь 1 + √–11 — комплексное число, представляющее собой комбинацию действительного и мнимого числа. Хотя умножение комплексных чисел производится по более сложным правилам, чем умножение действительных чисел, существование комплексных чисел порождает дополнительные способы разложения числа 12 на множители. Приведем еще один способ разложения числа 12:
12 = (2 + √–8)·(2 + √–8).
Следовательно, при использовании в доказательстве мнимых чисел речь идет не о единственности разложения, а о выборе одного из вариантов разложения на множители.
Таким образом, утрата единственности разложения на множители нанесла тяжелый урон доказательствам Коши и Ламе, но не уничтожила их полностью. Предполагалось, что доказательства должны продемонстрировать несуществование решений в целых числах у уравнения x<sup>n</sup> + y<sup>n</sup> = z<sup>n</sup>, где n — любое целое число, бóльшее 2. Как мы уже упоминали в этой главе, в действительности Великую теорему Ферма достаточно доказать только для простых значений n. Куммер показал, что, используя дополнительные ухищрения, можно восстановить единственность разложения на множители при некоторых значениях n. Например, проблему единственности разложения можно обойти для всех простых чисел, не превышающих n = 31 (включая само значение n = 31). Но при n = 37 избавиться от трудностей не так просто. Среди других, прочих чисел, меньших 100, особенно трудно доказать Великую теорему Ферма при n = 59 и n = 67. Это так называемые нерегулярные простые числа, разбросанные среди остальных чисел, стали камнем преткновения на пути к полному доказательству.
Куммер отметил, что не существует известных математических методов, которые позволили бы единым махом рассмотреть все нерегулярные простые числа. Но он полагал, что, тщательно подгоняя существующие методы к каждому нерегулярному простому числу в отдельности, удастся справиться с ними «по одиночке». Разработка таких выполненных по индивидуальному заказу методов было бы делом медленным и чрезвычайно трудным, и, что еще хуже, множество нерегулярных простых чисел было бесконечным. Рассмотрение нерегулярных простых чисел по одному силами всего мирового математического сообщества растянулось бы до конца веков.
Письмо Куммера произвело на Ламе ошеломляющее действие. Упустить из виду предположение о единственности факторизации! В лучшем случае такое можно было бы назвать чрезмерным оптимизмом, в худшем — непростительной глупостью. Ламе сознавал, что если бы он не стремился держать подробности своей работы в тайне, то смог бы обнаружить пробел гораздо раньше. В письме к своему коллеге Дирихле в Берлин он признавался: «Если бы только Вы были в Париже, или я был в Берлине, все это никогда бы не произошло». Если Ламе испытывал чувство унижения, то Коши отказывался признать поражение. По его мнению, по сравнению с доказательством Ламе, его собственное доказательство в меньшей степени опиралось на единственность разложения на множители, и до тех пор, пока проведенный Куммером анализ не будет полностью проверен, существует возможность, что в рассуждения немецкого математика где-то вкралась ошибка. |