Как угловой размер планеты, так и расстояние от нее различных спутников измерить просто. Имея эти данные, можно быстро вычислить массу главной планеты. (Так как у Венеры и Меркурия нет спутников, то мы не можем судить о их массе с такой же уверенностью, с какой мы судим, например, о массе Нептуна.)
Когда речь идет о массе, гиганты, естественно, остаются гигантами. Если взять массу Земли за 1, то массы гигантов будут равны:
Юпитер … 318
Сатурн … 95
Уран … 15
Нептун … 17
Четыре гиганта, в сущности, вобрали в себя всю массу планет солнечной системы! Масса одного Юпитера равна примерно 70 % общей массы планет. Если взять, помимо планет-гигантов, остальные планеты, все спутники, астероиды, кометы и метеориты, то они составят менее 1 % общей массы. Разумные существа других систем, изучая солнечную систему с полной беспристрастностью, сделали бы, по всей вероятности, такую запись о Солнце: «Звезда x, спектральный класс G2, четыре планеты плюс обломки».
Но взгляните еще раз на числа, выражающие массы планет. Сравните их с числами, выражающими объемы, и вы увидите, что масса этих планет довольно мала. Другими словами, Юпитер занимает в 1300 раз больше места, чем Земля, но вещества в нем больше всего в 318 раз. Следовательно, вещество Юпитера должно располагаться более свободно, а это значит (переходя на научный язык), что плотность Юпитера гораздо меньше плотности Земли.
Если принять плотность Земли за 1, то плотность гигантов можно получить, просто разделив число, которым выражена масса, на число, которым выражен объем. Плотности гигантов таковы:
Юпитер … 0,280
Сатурн … 0,125
Уран … 0,250
Нептун … 0,425
В такой шкале плотность воды будет равна 0,182. Как видите, Нептун, самый плотный из гигантов, примерно только в 2<sup>1</sup>/<sub>4</sub> раза плотнее воды, Юпитер и Уран — в 1,5 раза, а Сатурн даже менее плотен, чем вода.
Помнится, я читал книгу по астрономии, в которой автор наглядно обыграл это обстоятельство: если бы нашелся достаточно большой океан, то Сатурн плавал бы в нем, погрузившись менее чем на <sup>3</sup>/<sub>4</sub>. В этой же книге была дана впечатляющая иллюстрация, на которой Сатурн вместе со всеми своими кольцами плыл по бурному морю.
* * *
Но пусть проблема плотности не вводит вас в заблуждение. Сразу возникает мысль, будто Сатурн, в общем менее плотный, чем вода, состоит из какого-то пористого материала, вроде пробки. Однако это не так, и мне нетрудно разубедить вас.
На поверхности Юпитера видны темные полосы, или ленты, и все приметные детали их движутся по диску планеты с постоянной скоростью. Проследив за этим движением, можно очень точно определить период вращения планеты; оказывается, что он равен 9 часам 50 минутам 30 секундам. Примерно так же, хотя и с большими трудностями, можно определить периоды вращения более далеких гигантов.
И вот тут отмечается удивительное явление. Период вращения, который я назвал, относится только к экваториальной части Юпитера. Другие части планеты вращаются немного медленнее: период вращения Юпитера постепенно увеличивается по мере приближения к полюсам. Уже одно это показывает, что мы смотрим не на твердую поверхность, которая вращается как целое.
Вывод совершенно ясен. Мы видим не поверхность Юпитера (и других гигантов), а облака в их атмосферах. Под облаками простирается громадная толща атмосферы, гораздо более плотной, чем наша, но все же не такой плотной, как камень или металл. Определяя объем гигантских планет, мы берем их вместе с атмосферой, и поэтому средняя плотность получается столь малой. Если бы мы учитывали только ядро планеты, находящееся под атмосферой, то плотность была бы такая же, как у Земли, и, весьма возможно, даже выше. |