)
Попытаемся применить те же рассуждения, для того чтобы дать определение понятию жизни. Например, когда я учился в школе, то чаще всего встречался с функциональным определением, которое звучало приблизительно так: «Живой организм характеризуется способностью ощущать окружающую среду и соответственно реагировать на нее, поглощать пищу, переваривать, впитывать, усваивать, расщеплять ее и использовать полученную при этом энергию, освобождаться от отходов, расти и воспроизводиться». (Когда в ходе повествования мне придется возвращаться к этому определению, я буду ограничиваться словами «ощущать среду», добавляя «и т. д.», дабы не портить ленту моей пишущей машинки и сетчатку ваших глаз.)
Но всегда возникало сомнение: а действительно ли это определение является полным. Ведь и неодушевленные предметы могут имитировать эти функции. Кристаллы, например, растут, и если рассматривать насыщенный раствор как своего рода пищу, то, безусловно, мы сможем доказать, что она поглощается и усваивается. Можно сказать, что огонь переваривает топливо и освобождается от отходов, — и, уж конечно, растет и воспроизводится. Вдобавок уже сконструированы очень простые роботы, которые могут имитировать многие из этих функций жизни (кроме роста и воспроизведения) с помощью фотоэлементов и механических частей.
Я пробовал по-иному сформулировать функциональное определение жизни в книге «Жизнь и энергия» (1962). Там я дал общее представление о термодинамике и написал: «Живой организм характеризуется способностью временно и локально понижать энтропию».
Однако в таком виде это определение звучит просто ужасно, так как солнечное тепло тоже может вызывать временное и локальное понижение энтропии — например, всякий раз, когда под его воздействием испаряется лужа воды.
В данной главе я намерен объяснить, почему я не собираюсь оставлять это определение неизменным. (Если вы не знаете, что такое энтропия, то загляните в десятую главу.)
Очевидно, нам нужно внести в такое определение структурный элемент. Но можем ли мы это сделать? Все формы жизни, какими бы они ни были по внешнему виду, выполняют ряд общих функций. Все они ощущают среду… и т. д., и поэтому-то функциональное определение дать очень легко. Но одинаковы ли они по своей структуре? Уже сам факт, что я употребил выражение «какими бы они ни были по внешнему виду», говорит о том, что они неодинаковы.
Это, однако, верно только потому, что мы полагаемся на внешнее разнообразие, в котором можно убедиться невооруженным глазом. А что будет, если мы вооружимся соответствующими линзами?
* * *
Еще в 1665 году английский ученый Роберт Гук опубликовал книгу, в которой описал наблюдения, сделанные им с помощью микроскопа. В частности, он изучил тонкий срез пробки и нашел, что она вся изрешечена крохотными прямоугольными дырочками. Он довольно удачно назвал эти дырочки «клетками».
Но пробка — это мертвая ткань даже тогда, когда она образуется на живом дереве. На протяжении последующих полутора столетий ученые изучали под микроскопом живые ткани или ткани, которые были живыми, до того как их подготовили для изучения. Они обнаружили, что такие ткани тоже разделены на крошечные ячейки. Название «клетка» сохранилось и для них, хотя в живой ткани такие ячейки уже не пустые дырочки, а заполнены веществом.
И только в 1830 году, основываясь на всех накопленных к тому времени данных, два немецких биолога, Маттиас Якоб Шлейден и Теодор Шванн, смогли подарить миру обобщение, которое гласило, что все живые организмы состоят из клеток.
Вот вам и структурное определение: «Живой организм состоит из клеток».
Хотя такое определение и звучит хорошо, но оно не допускает обратного толкования. Нельзя сказать, что предмет, состоящий из клеток, жив, так как мертвый организм точно так же состоит из клеток, только клетки его мертвы. |