Но на такой планете, как Меркурий, где температура настолько высока, что водородные органические соединения разрушаются, фторорганические соединения могли бы стать как раз настолько активными, чтобы поддержать жизнь; возможно, именно из этих фторорганических соединений и развилась бы там жизнь.
* * *
Такая фторорганическая жизнь на фоне серы возможна, конечно, лишь при условии, что количества фтора, углерода и серы на горячих планетах достаточны для развития жизни в результате случайных реакций, протекавших на протяжении всего существования солнечной системы.
Каждый из перечисленных элементов в умеренном количестве имеется в любом уголке Вселенной, так что это условие, в общем, не так уж невыполнимо. Но на всякий случай поговорим и о возможных альтернативах.
Что, кроме углерода, может послужить главной составной частью гигантских молекул, на которых строится жизнь? Какие другие элементы обладают почти уникальной особенностью — способностью образовывать длинные цепочки и кольца из атомов? Ведь именно благодаря этой способности углерода возможно существование гигантских молекул, воплощающих разнообразие жизни.
В этом отношении более всего сходны с углеродом бор и кремний. И в периодической таблице элементов (в том виде, в каком ее обычно изображают) бор располагается как раз слева от углерода, а кремний — точно под ним. Однако бор — это элемент довольно редкий. Из-за низкой концентрации в коре планет его участие в случайных реакциях, порождающих жизнь, было бы таким редким, что жизнь на основе бора вряд ли появилась бы даже за пять миллиардов лет.
Остается только кремний, и уж здесь мы по крайней мере можем чувствовать себя уверенно. На Меркурии или на любой другой «горячей» планете может недоставать углерода, водорода или фтора, но, по-видимому, там имеются огромные количества кремния и кислорода: известно ведь, что это основные компоненты горных пород. Если «горячая» планета начнет сперва утрачивать водород и другие легкие элементы, а затем также кремний и кислород, то она перестанет существовать как планета и превратится просто-напросто в рой железо-никелевых метеоритов.
Кремний, как и углерод, способен образовывать длинные цепи. В результате присоединения атомов водорода к такой цепи образуются силаны. К сожалению, силаны менее стабильны, чем соответствующие углеводороды, и при высоких температурах уменьшается вероятность существования силанов достаточно сложного строения, которые могли бы обеспечить возникновение живого.
Но факт остается фактом: кремний образует в горных породах сложные цепочки, и эти цепочки не разрушаются при высокой температуре, даже если горные породы раскалить добела. Однако эти цепочки состоят не только из атомов кремния (Si — Si — Si — Si — Si), а из атомов кремния вперемежку с атомами кислорода (Si — О — Si — О — Si).
Может случиться так, что каждый атом кремния прикарманит четыре атома кислорода. Тогда к атому кремния сверху и снизу присоединятся атомы кислорода, соединенные в свою очередь с другими атомами кремния, и так далее. В результате получится чрезвычайно стабильная пространственная решетка.
Раз уж мы начали говорить о кремнийкислородной цепочке, то посмотрим, а что же произойдет, если атомы кремния с их способностью подцеплять два дополнительных атома вместо атомов кислорода заполучат атомы углерода — в сочетании, конечно, с атомами водорода? Такие гибридные молекулы, имеющие как кремниевую, так и углеродную основу, называются силиконами. Эти соединения тоже были созданы во время второй мировой войны и с тех пор высоко ценятся за высокую стабильность и инертность.
Возможно, что при более высокой температуре какие-то очень сложные силиконы могли бы проявить активность и гибкость, необходимые для жизни. А может быть, существуют и такие силиконы, которые вместо атомов водорода содержат атомы фтора? Подобные силиконы было бы логично назвать фторсиликонами, но, насколько мне известно, они до сих пор не изучались (но я готов тут же отказаться от своих слов, если кто-нибудь меня поправит). |