Изменить размер шрифта - +
Среди них есть молекулы, движущиеся быстро, есть движущиеся очень быстро и даже движущиеся необыкновенно быстро. Есть и медленные молекулы, и очень медленные, и очень-очень медленные. Однако здесь царит полнейший хаос и отчаянная давка. Более того, они еще и сталкиваются друг с другом миллионы раз в секунду, так что скорость и энергия каждой из них постоянно меняются. Поэтому всякая достаточно заметная порция газа имеет свою справедливую долю и быстрых, и медленных молекул, а в результате — и ту же температуру, какую имеет всякая другая достаточно заметная порция.

Но что, если — пусть это будет редкая случайность — несколько молекул высокой энергии вдруг перешло бы по соединительной трубке из правого сосуда в левый, а несколько молекул низкой энергии — из левого в правый? Тогда левый сосуд нагрелся бы, а правый охладился (хотя общая средняя температура осталась бы той же самой). Итак, несмотря на тепловое равновесие, возник бы поток тепла и энтропия понизилась бы.

На самом деле есть некоторая бесконечно малая вероятность (невообразимо близкая к нулевой), что это случится просто благодаря хаотическому движению молекул. Разницей между «нулем» и «почти-почти-почти нулем» в практике можно пренебречь, но с точки зрения теории она колоссальна; так вот, по теории «тепловой жидкости» возможность переноса при температурном равновесии равна нулю, а по теории «частиц в движении» она равна «почти-почти-почти нулю».

Максвеллу нужен был какой-то эффектный драматический образ, для того чтобы эта разница стала предельно выпуклой.

Вообразите, сказал Максвелл, что в трубке, соединяющей сосуды с газом, сидит крошечный демон. Пусть он пропускает быстрые молекулы только справа налево, а медленные — только слева направо. Тогда быстрые молекулы соберутся в левом, а медленные — в правом сосуде. Левый сосуд нагреется, а правый охладится. Энтропия повернет вспять.

Если, однако, теплота представляет собой непрерывную текучую жидкость, то «демон Максвелла» ничего подобного сделать не сможет. Так Максвелл успешно упразднил расхождение между теорией «тепловой жидкости» и теорией «частиц в движении».

 

 

* * *

 

Демон Максвелла, кроме того, дал возможность уйти от роковой неизбежности возрастания энтропии. Как я уже объяснял в предыдущей главе, возрастание энтропии означает увеличение беспорядка, истощение, износ.

Коль скоро энтропия обязана непрерывно и безудержно повышаться, везде во Вселенной когда-то должна установиться одна и та же температура. В таких условиях жизнь, как всякое движение, невозможна (разумеется, это более чем далекое будущее). Некоторые представители человеческого рода воспринимают это почти как посягательство на их личное бессмертие. Поэтому существует сильная психологическая потребность не признавать, что энтропия должна расти.

В демоне Максвелла сторонники этой точки зрения находят опору своей позиции. Конечно, демона не существует, но его главная функция заключается в умении выбирать между движущимися молекулами. Научные возможности человечества все расширяются, и может прийти день, когда оно создаст какое-нибудь устройство, выполняющее функцию демона Максвелла. Неужели человечество не сможет тогда понизить энтропию?

Увы, в этом рассуждении есть изъян. Мне больно говорить это, но Максвелл сплутовал. В присутствии демона газ нельзя считать самостоятельной изолированной системой. Полная система состоит в этом случае из газа и демона. В процессе выбора между быстрыми и медленными молекулами повышение собственной энтропии демона с избытком перекрыло бы то небольшое понижение энтропии, которое он произвел бы в газе.

Я, конечно, понимаю: вы сильно сомневаетесь в том, что я когда-нибудь действительно занимался изучением каких бы то ни было демонов, не говоря уже о демоне специальной, максвелловской разновидности.

Быстрый переход