Изменить размер шрифта - +
Что касается газов, металлов, хлорорганики и так далее, то они ему не по плечу; борьба с ними – не его задача.

    Макрофильтрация обычно используется в предфильтрах, патроны которых врезают в водопроводную трубу на входе ее в квартиру, чтобы очистить воду от крупных частиц; тут можно поставить два предфильтра, на холодную и горячую воду, [17] и можно, разумеется, закладывать в патроны картриджи для микрофильтрации. Естественно, если такой картридж с очень мелкими порами (0,5–1 мкм), то он быстро засорится; оптимальный размер – 5 мкм. А вот в системе доочистки перед самым краном может присутствовать модуль микрофильтрации с размером пор 0,5–1 мкм, если в квартире установлен предфильтр. Если же его нет, то в систему перед краном можно установить два картриджа с порами 5 мкм и 0,5–1 мкм.

    Теперь уместно поговорить о фильтрах, основанных на явлении осмоса и обратного осмоса, так как в них, по сути дела, реализуется такая же процедура очистки, как в механических фильтрах, только на молекулярном уровне. Твердое тело является очень мелкой природной сеткой, так как между атомами есть пустоты размером в несколько ангстрем. Но эта сетка трехмерная и исключительно плотная, она не пропускает ничего. Однако представьте, что мы изготовили пленку-мембрану толщиной в один атом или молекулу, а реально – во много молекулярных слоев, но все-таки весьма тонкую, от 1 мм до 0,1 мм или еще тоньше. В этой пленке между молекулами будут «отверстия-поры», причем очень маленькие, гораздо меньше, чем в механических фильтрах. Питьевая вода состоит из молекул H2O и множества молекул и ионов примесей, и все они имеют хотя и малые, но разные размеры. Если процеживать воду через мембрану (точно так же, как мы это делали через марлю), то пройдут небольшие молекулы H2O и близкие к ним по величине, а более крупные будут задержаны. Это и есть принцип осмотической, или мембранной, фильтрации.

    Чтобы разобраться с ним окончательно, я опишу классический опыт французского физика Нолле, открывшего явление осмоса в 1748 г. Представьте цилиндр размером с обычный стакан, открытый с обоих концов; один конец (дно) затягиваем пленкой из бычьего пузыря, наливаем в цилиндр раствор сахара в воде и погружаем его дном в сосуд с чистой водой. Большие молекулы сахара не могут пройти сквозь материал пузыря, а молекулы воды проходят, и мы наблюдаем, как изменяется уровень жидкости в цилиндре. Бычий пузырь в данном случае является полупроницаемой мембраной.

    В наше время такие мембраны изготавливают из полимерных и керамических материалов, и, в зависимости от размера пор, с их помощью осуществляется:

    – обратный осмос;

    – нанофильтрация; [18]

    – ультрафильтрация;

    – микрофильтрация.

    Самая мелкая «сетка» (обратный осмос) пропускает лишь молекулы воды, и в результате мы получаем нечто близкое к воде дистиллированной. При нанофильтрации задерживаются взвеси, микрофлора (включая вирусы), любая органика и частично ионы натрия, кальция и магния; при ультрафильтрации – взвеси, микрофлора и крупные органические молекулы; при микрофильтрации – взвеси и бактерии. Этот способ фильтрации применяется прежде всего для удаления бактериологических и органических загрязнений (в том числе – хлорорганики), а также обессоливания воды (в случае обратного осмоса). Разумеется, можно сочетать в фильтре несколько мембран одного или разных типов и комбинировать мембранный фильтр с другими – например, с работающими по принципу ионного обмена. В дальнейшем я почти не буду касаться мембранной фильтрации, так как эти фильтры дороги и рассчитаны скорее на коллективное, чем индивидуальное применение.

    Перейдем к очень распространенному методу сорбционной фильтрации.

Быстрый переход