Изменить размер шрифта - +
Такой фокус могла бы сделать бомба ядерного расщепления, и в 1952 году такая бомба была взорвана в Соединенных Штатах, и с помощью расщепляющегося урана был произведен водородный синтез. Немедленно вслед за этим подобный взрыв произвел и Советский Союз.
Такая бомба «ядерного синтеза» или «водородная бомба» была намного более мощной, чем бомба расщепления, и она никогда не использовалась в войне. Из за того, что водородная бомба требует высокой температуры для ее действия, ее также назвали «термоядерной бомбой». Именно «термоядерную войну», то есть войну с применением таких бомб, я рассматривал как причину возможной катастрофы четвертого класса.
А нельзя ли управлять термоядерным синтезом и производить энергию так же, как при расщеплении урана? Английский физик Джон Дэвид Лаусон (р. 1923) в 1957 году выработал необходимые для этого условия. Водород должен быть определенной плотности, достигнуть определенной температуры и удерживать эту температуру, не улетучиваясь в течение определенного времени. Любое снижение одного из этих параметров требует усиления одного или обоих других. С тех пор ученые в Соединенных Штатах, Великобритании и Советском Союзе пытаются добиться выполнения этих условий.
Существует три типа атомов водорода: водород 1, во дород 2 и водород 3. Водород 2 называется «дейтерий», а водород 3 называется «тритий». Водород 2 синтезируется при более низкой температуре, чем водород 1, а водород 3 синтезируется при еще более низкой температуре (хотя даже самая низкая температура для синтеза в земных условиях — все же десятки миллионов градусов).
Водород 3 — это радиоактивный атом, которого почти нет в природе. Его можно произвести в лаборатории, но его можно использовать только в небольшом количестве. Водород 2 поэтому является основным топливом для синтеза, для снижения температуры синтеза добавляется немного водорода 3.
Водород 2 менее распространен, чем водород 1. Из каждых 100 000 атомов водорода только 15 являются водородом 2. Но даже при этом в одном галлоне морской воды водорода 2 присутствует столько, что они заключают в себе энергию, которую можно получить от сжигания 350 галлонов бензина. А океан (в котором два атома из каждых трех — водород) настолько обширен, что содержит столько водорода 2, что его хватит, чтобы производить энергию при существующем темпе использования на миллиарды лет.
Существует ряд параметров, по которым термоядерный синтез, как представляется, предпочтительнее ядерного расщепления. Во первых, вес: благодаря синтезу из вещества может быть извлечено в десять раз больше энергии, чем из такого же количества вещества, подвергнутого расщеплению, и водород 2 — топливо синтеза — гораздо легче добыть, чем уран или торий, и с ним гораздо легче обращаться. Когда водород 2 подготовлен для синтеза, только микроскопическое его количество будет использоваться в какой то один момент, так что даже если синтез выйдет из под контроля и весь синтезируемый материал вступит в реакцию сразу, то результатом будет лишь небольшой взрыв, недостаточный даже для того, чтобы его заметить. Кроме того, водородный синтез не производит радиоактивных отходов. Его основной продукт — гелий, наименее опасное из известных веществ. В ходе синтеза производятся водород 3 и нейтроны — они опасны. Однако они производятся в незначительных количествах и могут быть переработаны и использованы в ходе дальнейшего синтеза.
Словом, термоядерный синтез представляется во всех отношениях идеальным источником энергии, все дело лишь в том, что пока у нас его нет. Несмотря на годы попыток ученых, пока нет достаточного количества водорода, при достаточно высокой температуре, на протяжении достаточно длительного времени, чтобы произвести управляемый синтез.
Ученые подходят к проблеме с нескольких направлений. Сильные, точно установленные магнитные поля удерживают заряженные частицы на месте, в то время как температура медленно повышается.
Быстрый переход