Скорость возрастания энтропии по мере приближения к тепловой смерти неуклонно будет падать, но области со сравнительно низкой энтропией (области, малые по сравнению со Вселенной, но по человеческим масштабам очень большие) оставались бы то тут, то там.
Если мы допустим, что человеческая технология за триллион лет будет развиваться более или менее неуклонно, то люди должны оказаться способными воспользоваться этими областями низкой энтропии, обнаруживая и используя их, как мы сейчас обнаруживаем и используем месторождения золота. Эти области, продолжая истощаться, могли бы при этом поддерживать человечество миллиарды лет. Конечно, люди могли бы прекрасно находить новые области низкой энтропии, случайно образующиеся в море тепловой смерти, и использовать их, продолжая таким образом существовать вечно, хотя и в ограниченных условиях. Затем, наконец, шанс предоставит область низкой энтропии размером со Вселенную, и люди смогут повторить относительно безграничную экспансию.
А если взять последнюю крайность, люди могут поступить так, как я описал в моем научно фантастическом рассказе «Последний вопрос», впервые опубликованном в 1956 году, и попытаться открыть способы вызвать массированное уменьшение энтропии, предотвращая таким образом тепловую смерть, либо обдуманно обновить Вселенную, если тепловая смерть уже на пороге.
Вопрос, однако, в том, будет ли человечество еще существовать в те времена, когда тепловая смерть станет проблемой, не сметет ли нас, на самом деле, какая либо более ранняя катастрофа другого вида?
Вот вопрос, на который мы будем искать ответ в нашей книге.
3. КРУШЕНИЕ ВСЕЛЕННОЙ
ГАЛАКТИКИ
Мы только что рассуждали о том, как, казалось бы, должна была вести себя Вселенная в соответствии с законами термодинамики. Теперь время взглянуть на собственно Вселенную, чтобы выяснить, не заставит ли это нас изменить наши выводы. Для этого посмотрим, как развивалось представление о Вселенной до того наиболее полного, которое мы смогли получить только в двадцатом веке.
В древнейшие времена взгляд человека на Вселенную ограничивался тем, что можно было видеть, и это было очень немного. Сначала Вселенная представлялась маленьким клочком поверхности Земли, над которым небо и все, что на нем было, выглядело просто куполом.
Греки первыми признали, что Земля — шар, они даже получили представление о его истинном размере. Они установили, что Солнце, Луна и планеты движутся по небу самостоятельно, независимо от других объектов, и определили их орбиты. Звезды, по их мнению, находились все в единой, наиболее далекой сфере и считались просто фоном. Даже когда Коперник отправил Землю нестись вокруг Солнца, и появление телескопа раскрыло интересные детали по части планет, знание людей в действительности не простиралось за пределы Солнечной системы. Даже в восемнадцатом веке звезды все еще были не более чем фон. Только в 1838 году немецкий астроном Фридрих Вильгельм Бессель (1784 1846) установил расстояние до одной из звезд, и был принят масштаб для измерения расстояний между звездами.
Свет движется со скоростью примерно 300 000 километров в секунду (Однако, как учил Эйнштейн, в мире все относительно. В 1997 году исследователи Амстердамского университета с помощью расположенных в Англии радиотелескопов зафиксировали взрыв в одной из черных дыр, находящейся в центре квазара G. S. R. 1915 (примерно на расстоянии 40 000 световых лет от Земли). Масса этой дыры во много раз больше массы нашего Солнца. Так вот, эта дыра после взрыва выбрасывает из своего Центра раскаленную массу порой со скоростью, превышающей скорость света), и за год, следовательно, пройдет 9,44 триллиона километров. Это расстояние получило название светового года, и даже самая близкая к нам звезда находится на расстоянии 4,4 световых лет. Среднее расстояние между соседствующими с нами звездами составляет 7,6 световых лет.
Звезды не представляются рассеянными по Вселенной равномерно. |