Изменить размер шрифта - +
Именно это представляется сейчас наиболее вероятным будущим для незамкнутой Вселенной.
Существуют теоретические основания для предположения, что гравитационная энергия черных дыр способна произвести огромное количество работы. Мы легко можем представить себе, что люди пользуются черными Дырами как большими топками, забрасывая в них ненужную массу и используя радиацию, вырабатываемую в этом процессе. За отсутствием излишков массы можно было бы использовать вихревую силу черной дыры. В этом случае из черных дыр можно извлечь гораздо больше энергии, чем из той же массы обычных звезд, и потомки человечества могли бы дольше просуществовать во Вселенной с черными дырами, чем во Вселенной без черных дыр.
В завершение второе начало термодинамики все же проявит себя. Вся материя окажется в черных дырах, и черные дыры перестанут вращаться. Никакой работы из них извлечь будет уже нельзя, в свои права вступит максимальная энтропия. Наступление тепловой смерти с черными дырами представляется неминуемым, тогда как без них еще остаются кое какие шансы избежать ее. Если мы имеем дело с черными дырами, то трудно предположить наличие областей низкой энтропии, беспорядочную флуктуацию, и в этом случае просто невозможно понять, как жизнь может избежать окончательной катастрофы.
Однако как черные дыры вписываются в замкнутую Вселенную?
Учитывая общий размер и массу Вселенной, процесс, при котором черные дыры увеличиваются в числе и по размерам, может быть весьма медленным. Вселенной сейчас 15 миллиардов лет, но черные дыры, вероятно, все еще составляют только малую часть ее массы(Мы не можем быть вполне уверены в этом. Черные дыры почти невозможно обнаружить, и, вероятно, многие из них ускользают от нашего внимания. Возможно, именно масса этих незамеченных черных дыр и составляет «недостающую» массу, необходимую для того, чтобы сделать нашу Вселенную замкнутой, — в этом случае черные дыры составляют от 50 до 90 процентов массы Вселенной). Даже после половины триллиона дополнительных лет, когда наступит поворот и Вселенная начнет сжиматься, черные дыры все еще могут составлять лишь малую долю общей массы.
Тем не менее как только Вселенная начнет сжиматься, катастрофа черных дыр приобретет дополнительный потенциал. Черные дыры, которые образовывались в период расширения, были, по всей вероятности, ограничены сердцевинами галактик, но теперь, когда галактические скопления приближаются друг к другу и когда Вселенная становится все богаче энергетической радиацией, мы можем быть уверены, что черные дыры станут образовываться в больших количествах и будут расти быстрее. На финальных стадиях, когда галактические скопления станут объединяться, черные дыры тоже объединятся, и окончательное сжатие в космическое яйцо явится, безусловно, сжатием в огромную вселенскую черную дыру. Впрочем, масса Вселенной в размерах космического яйца и не могла бы быть ничем иным, как огромной черной дырой.
Но тогда, если уже ничто не может образоваться из космической дыры, то как может космическое яйцо, образованное сжатием Вселенной, взорваться, чтобы создать новую Вселенную? Каким образом космическое яйцо, которое существовало 15 миллиардов лет назад, могло взорваться и образовать Вселенную, которую мы теперь населяем?
Чтобы понять, как это могло произойти, мы должны признать, что черные дыры не равны по плотности. Начнем с того, что чем больше масса объекта, тем более интенсивна его поверхностная гравитация (если это обычная звезда) и тем выше у него скорость исчезновения — вторая космическая. И, следовательно, тем меньше объекту нужно сжиматься, чтобы увеличить скорость исчезновения до значения, равного скорости света, и тем больше радиус Шварцшильда, на котором заканчивается сжатие.
Как было сказано выше, радиус Шварцшильда у Солнца составляет 3 километра. Если звезда с массой в 3 раза большей, чем масса Солнца, сократилась бы до своего радиуса Шварцшильда, то этот радиус равнялся бы 9 километрам.
Быстрый переход