Изменить размер шрифта - +
С этой точки зрения Вселенная имеет не единственное существование, или историю, а все возможные версии Вселенной существуют одновременно в так называемом квантовом наложении, квантовой суперпозиции. Это может показаться столь же странным, как пример со столом, который исчезает, когда мы выходим из комнаты, но в отношении этого случая следует сказать, что квантовая теория выдержала все экспериментальные проверки, которым когда-либо подвергалась.

 

4. Альтернативные истории

 

В 1999 году группа австрийских физиков провела эксперимент по обстрелу некой преграды серией молекул, структура которых напоминает рисунок на поверхности футбольного мяча. Эти молекулы, из шестидесяти атомов углерода каждая, иногда называют бакиболами или фуллеренами — в честь американского архитектора Бакминстера Фуллера (1895–1983), который строил здания подобной конструкции. Так называемые геодезические купола Фуллера представляют собой, пожалуй, крупнейшие объекты со структурой футбольного мяча. Бакиболы же — наименьшие из таких объектов. В преграде, на которую ученые их направили, имелось две щели, сквозь которые бакиболы могли пролететь. Позади преграды физики расположили своего рода экран для обнаружения и подсчета проскочивших молекул.

Бакиболы. Бакиболы похожи на микроскопические футбольные мячи, состоящие из атомов углерода.

Если мы поставим аналогичный эксперимент с настоящими футбольными мячами, нам понадобится игрок — не особенно меткий, но способный весьма продолжительное время бить по возникающим перед ним мячам с заданной нами скоростью. Мы расположим этого игрока перед преградой — стенкой, в которой имеется два вертикальных проема. Позади стенки (параллельно ей) натянем очень длинную сетку. Большинство посланных игроком мячей попадет в преграду и отскочит обратно, но некоторые пролетят сквозь тот или другой проем и попадут в сетку. Если проемы будут лишь чуточку больше мяча, то по другую сторону стенки-преграды возникнут два строго параллельных потока. Если же проемы немного расширить, каждый из потоков будет слегка расходиться (см. ил., с. 72).

 

Футбол через стенку-преграду с двумя проемами. Когда футболист посылает мячи через проемы в стенке, мы можем наблюдать обычную картину.

Если мы закроем один из проемов, то соответствующий ему поток мячей не сможет пролетать через преграду, однако это никак не повлияет на другой поток. Если мы снова откроем тот проем, который был закрыт, это лишь увеличит число мячей, приземлившихся в любой избранной точке по другую сторону стенки, поскольку это будут все мячи, прошедшие через остававшийся открытым проем, плюс другие мячи, прошедшие через вновь открытый проем. Иными словами, если одновременно открыть два проема, мы увидим сумму тех мячей, которая появилась бы за преградой в том случае, когда мы открывали бы поочередно каждый из проемов. Такова реальность, к которой мы привыкли в повседневной жизни. Совсем иную картину увидели австрийские исследователи, когда вели обстрел своими молекулами.

В австрийском эксперименте открытие второго проема действительно увеличивало число молекул, попадавших на определенный участок экрана, но при этом уменьшало их число на другом участке (см. ил., с. 73).

 

Бакибольный футбол через двухщелевую преграду. Когда молекулы-«мячи» пролетают сквозь щели, на экране появляется узор, соответствующий какому-то квантовому закону.

Фактически были точки, куда бакиболы вообще не попадали, когда были открыты обе щели, но они попадали туда, если открытой оставалась лишь одна из щелей. Это должно выглядеть весьма странным. Как может открытие второй щели уменьшить число молекул, попадающих в определенную точку?

Чтобы получить ключ к ответу, изучим всё детально. В этом эксперименте многие из молекулярных «мячей» попали в пятно, центр которого располагался на полпути между теми местами, куда можно было ожидать попадания мячей, пролетевших через ту и другую щели.

Быстрый переход