Изменить размер шрифта - +
Когда объект достигает скорости звука, он пробивает «звуковой барьер»: это происходит при махе 1, (единица измерения названная его именем).

Как ученый Мах разделял эмпиризм Юма и его теорию познания. По мнению Маха именно так работает, или должна работать, наука. В отличие от большинства философов Мах достаточно знал о науке, чтобы применять идеи Юма и достигать результатов. Во второй половине XIX века наука проходила через трансцендентную фазу, как и философия. Она стала слишком обширной и преувеличивала свои возможности — тщилась завоевать мир и объяснить его (периодически появляющееся в науке умственное расстройство, достигшее периода обострения к концу XIX века).

Считалось, что наука может познать все. Целая вселенная действует по законам механики, открытым при помощи науки. Такие законы существуют объективно и не могут быть поставлены под сомнение философией.

Маху пришлось взорвать эти представления.

Его возражения были основаны на работах Юма.

Так называемые законы природы являются лишь обобщением великого множества случаев опыта.

Только такой опыт и существует, обобщение — не более чем созданные человеком идеи, не имеющие независимого существования.

Развитие Махом идей Юма вызывало раздражение в эпоху науки Дарвина, Фарадея и Менделеева.

Но его идеи могли выстоять против таких гигантов, поскольку были вдохновлены идеями Ньютона. Юм очень глубоко понимал науку, и его теория осталась адекватной, несмотря на тот шаг, который наука сделала за временной отрезок между ним и Махом.

Когда Мах начал применять идеи Юма к науке, он вскоре обнаружил, что некоторые основные предположения его времени ставятся под вопрос.

Согласно его концепции, все, что можно сказать о пространстве, — это распространение и поведение феноменов внутри него. То есть нельзя говорить о факте бытия явлений в чем-то, называемом пространством, потому что таковые нельзя наблюдать или зарегистрировать при помощи при боров, по определению. Другими словами, не существует абсолютного пространства: это просто понятие.

То же самое верно и в отношении времени.

Мы на самом деле не измеряем время. Время — только наша идея. Все, что мы можем измерить — это серию изменений (бег, например) в соотношении с другой серией изменений (контролируемые и стандартизированные движения секундомера).

Точно так же не существует такого явления, как абсолютное пространство. Несколькими годами позже Эйнштейн признает, что на его теорию относительности повлияли идеи Маха о времени.

Но такой подход к эпистемологии содержит в себе семена собственного будущего разрушения (и как мы увидим, возможно, даже разрушение эпистемологии является задачей философии).

Мах также применил идею Юма к атомам. Во второй половине XIX века понятие атома начало играть важную роль, как в химии, так и в физике.

Менделеев создал свою периодическую таблицу элементов на основе идеи различия атомов, революционная теория Авогадро об одинаковой плотности газов была основана на понятии атома.

Но никто так и не видел атома и не измерил его, и не выступил с неоспоримым свидетельством его существования. Наука двигалась в поле гипотез, не основанных на наблюдениях, полагаясь на те объяснения, которые работают. Понятие атома работало как объяснение — и оказалось крайне плодотворным в расширении научного знания. Так что из того, что существование атома не может быть доказано — это не важно.

Мах, а следовательно, и Юм были не правы. Или неправы мы? Что же на самом деле такое атомы?

Атомы, как считали ученые конца XIX века, были мельчайшими нерушимыми «шарами для бильярда». Мах возражал против этой точки зрения, основываясь на философии Юма, и был прав. Мы знаем, что атомы не являются мельчайшими нерушимыми шарами для бильярда. Согласно современной науке они гораздо сложнее.

Быстрый переход