|
Но никакие обертоны не дадут возможности наблюдать при колебаниях белых карликов всплески излучения с периодом 33 миллисекунды. Это невозможно мало! И зимой 1968 года всем стало очевидно, что нейтронные звезды наконец-то обнаружены. Более того, блестяще подтвердилась идея Ф. Цвикки о том, что нейтронные звезды образуются при вспышках сверхновых, в процессе катастрофического коллапса.
Для астрономов-наблюдателей наступила пора прозрения. Минута, когда пришлось убедиться, насколько это страшная штука — психологическая инерция.
Казалось бы, если явление реально существует, если приборы его фиксируют, то наблюдатели должны это явление наблюдать. Должны? Не всегда. Методика измерений сейчас столь сложна, что сами по себе показания приборов еще ни о чем не говорят, их приходится подвергать долгой и сложной обработке. Одно и то же показание прибора можно обработать по-разному и нередко получить разные результаты. А поскольку каждый наблюдатель еще до начала работы прикидывает, что он вероятнее всего получит, то… и ищет, есть это ожидаемое явление или нет. А побочные сведения часто остаются неучтенными.
Рентгеновское излучение Крабовидной туманности наблюдалось много раз. С 1963 года, когда оно было впервые обнаружено, состоялись десятки запусков ракет. Результаты проверялись и перепроверялись. Зимой 1968 года в Крабовидной туманности был обнаружен пульсар. Возник вопрос: если пульсар так сильно меняет радиоблеск, то почему постоянно рентгеновское излучение?
А может, оно и не постоянно, сказали наблюдатели, мы об этом не думали. Заметьте: не думали, а потому и не увидели. Новых ракетных стартов не потребовалось. Группа американских ученых, возглавляемая Е. Болдтом, неоднократно запускала ракеты для исследований Крабовидной туманности. Последний старт состоялся в марте 1968 года. Несколько месяцев спустя Е. Болдт с сотрудниками заново обработал результаты этого полета с учетом того, что переменность рентгеновского источника может быть быстрой. И переменность нашли — точно такую же, как у радиопульсара, с периодом 33 миллисекунды. Вот вам и достоверность наблюдательных данных…
Смущенные наблюдатели решили реабилитировать себя до конца. Решили найти быструю переменность и у оптического объекта — южной звезды. Лет десять назад для постановки такой задачи нужна была изрядная фантазия, а теперь не поставить ее было просто невозможно!
В январе 1969 года в обсерватории Стюарда при Аризонском университете Дж. Кок, Дж. Дисней и Дж. Тейлор провели серию оптических наблюдений южной звезды, использовав фотоумножители, способные фиксировать быстрые колебания блеска. И открыли первый оптический пульсар. Восемьдесят лет астрономы наблюдали южную звезду, а после второй мировой войны даже догадывались (правда, лишь некоторые!), что это нейтронная звезда. Но ее пульсирующее излучение было обнаружено лишь после того, как пройти мимо этого открытия стало совершенно невозможно. Это открытие наблюдатели были вынуждены сделать.
Тридцатипятилетняя эпопея поиска нейтронной звезды в Крабовидной туманности завершилась морозными январскими ночами 1969 года…
Ф. Цвикки утверждал, что нейтронные звезды возникают при взрывах сверхновых. Но во время взрыва образуется и газовая оболочка. Почему же пульсары в основном оказались не связанными с газовыми расширяющимися остатками сверхновых? Нет ли какого-то скрытого порока в рассуждениях Ф. Цвикки?
Правда, Крабовидная туманность не одинока. Пульсар был обнаружен и в другом остатке, расположенном в созвездии Парусов. В 1968 году австралийские радиоастрономы открыли в этом остатке (он называется Паруса X) пульсар с очень коротким периодом — 89 миллисекунд.
Но главное не в этом. Газовая туманность — остаток взрыва сверхновой — довольно быстро рассеивается в межзвездном пространстве. Через несколько десятков тысячелетий после взрыва туманность уже очень трудно обнаружить, радиоизлучение ее уменьшается, газ смешивается с межзвездной средой. |