Изменить размер шрифта - +
К путешествиям первого порядка, по нескольку дней, можно отнести путешествие на Луну. Высадка человека на Луне ожидается к 1970 году — и может ли что-то удержать нас от этого, кроме возможной технической аварии?

Существует два типа опасностей, которые сейчас тщательно изучаются. Во-первых, космонавт в течение недели будет находиться в состоянии невесомости. Опасно ли это? Люди уже пребывали по две недели на орбите и возвращались обратно живые и здоровые, несмотря на невесомость. Так что с этим, кажется, все в порядке. Во-вторых же, космонавты будут подвергаться радиационному воздействию поясов Ван Аллена, облучению высокоэнергетическими частицами, испускаемыми Солнцем, и космическими лучами, попадающими в Солнечную систему извне. Можно ли защититься от этого? Природа и воздействие всех этих видов излучения сейчас изучается десятками американских и советских спутников, и пока не получено никаких сведений, которые свидетельствовали бы о невозможности полета на Луну.

Единственная причина, по которой человек не попал на Луну до сих пор, — это невыполненный объем технической работы, необходимой для того, чтобы не только забросить туда космонавта, но и вернуть его обратно живым. Когда мы наконец достигнем Луны, ничто уже не будет удерживать нас от того, чтобы перебросить туда технику и припасы, необходимые для создания постоянно действующей базы (см. главу 29).

К 1980 или 1985 году такая база уже будет существовать. Благодаря наличию астрономической обсерватории на Луне будут получены данные, которые откроют нам путь к более масштабным космическим путешествиям. Более того, Луна, с ее слабой гравитацией, может послужить и более экономичной пусковой площадкой для такого рода путешествий, чем сама Земля.

На втором этапе развития космического транспорта, когда люди смогут позволить себе полеты по нескольку месяцев, в пределах досягаемости окажется внутренняя часть Солнечной системы — Марс, Венера и Меркурий. Из этих трех наиболее благодатную цель представляет собой Марс. Несмотря на чрезвычайно разреженную и безводную атмосферу, на этой планете даже может существовать жизнь в ее простейших формах (см. главу 20).

Главная сложность полета на Марс заключается в огромном расстоянии, которое предстоит преодолеть. По пути до Марса людям придется провести в космосе полгода, а то и больше. Смогут ли они столько времени прожить в изоляции? А в невесомости?

Давайте рассмотрим эти проблемы поподробнее. Изоляция вряд ли окажет серьезное воздействие. Четыре или пять веков тому назад люди отправлялись в океанские путешествия, длительность которых тоже составляла по нескольку месяцев, и по пути моряков подстерегало не меньше опасностей, чем космонавтов — по дороге к Марсу. А изоляция мореплавателей прошлого была куда более полной, чем изоляция космонавтов будущего. Ведь космонавт в любой момент может воспользоваться радиосвязью с Землей и знать при этом, что его слышит все человечество.

Проблема наличия припасов сейчас активно решается. Во-первых, надо сделать так, чтобы не было необходимости везти с собой тонны воды и кислорода. Вместо этого на борту должна иметься миниатюрная химическая фабрика, где будет очищаться вода, содержащаяся в отходах, а из углекислого газа будет вновь образовываться кислород. Вот вопрос производства на борту корабля пищи пока не рассматривается — пищу придется везти отдельно в замороженном и высушенном виде.

Теперь о невесомости. Есть мнение, что пребывание в невесомости по шесть месяцев и более нанесет здоровью человека серьезный вред. Однако если при планировании космического корабля сделать его (весь или частично) вращающимся с достижением эффекта центрифуги, центробежная сила будет прижимать космонавта к стенкам, имитируя, таким образом, гравитационное поле. После придания кораблю изначального импульса на дальнейшее поддержание вращательного движения уже не потребуется расхода энергии, и искусственная гравитация на протяжении всего полета обеспечит космонавтам комфорт и сохранность здоровья.

Быстрый переход