Однако и этого достаточно, чтобы обеспечить 80 220 возможных вариантов чередования аминокислот в пептидной цепочке.
А когда дело доходит до больших белковых молекул, то задача становится чрезвычайно сложной, но все-таки не безнадежной. Установить порядок аминокислот в длинной цепочке можно, разрубая ее на мелкие участки по две-три аминокислоты в каждом и выясняя порядок следования аминокислот по всем этим отрезкам. К 1953 году, например, описанным образом был полностью установлен порядок аминокислот в молекуле гормона инсулина (см. главу 4).
Инсулин стал первой белковой молекулой, загадка строения которой была решена с помощью описанного алгоритма. Процесс решения занял восемь лет. Однако по мере дальнейшей разработки технологии срок, необходимый для разгадки строения крупных белков, становился все меньше. Так уже вскоре был установлен состав молекулы рибонуклеазы (фермента, который стимулирует распад рибонуклеиновой кислоты — той самой знаменитой РНК, о которой столько упоминалось в главе 2), которая представляет собой пептидную цепь из 124 аминокислот.
Процесс, путем которого рибонуклеаза (как и любой другой фермент) вызывает химическую реакцию, сам по себе настолько сложен и интересен, что заслуживает отдельного описания, чем я и займусь в следующей главе. Разумеется, как только химики установили точное строение молекулы фермента, их тотчас же заинтересовал вопрос о том, что же именно в этом строении придает молекуле ее потрясающую способность вызывать определенную химическую реакцию, в данном случае — распад РНК.
Химики осторожно начали работу в этом направлении, заменяя в рибонуклеазе то одну, то другую аминокислоту, стараясь понять, где же в ней «активный элемент», какие же именно участки молекулы непосредственно задействованы в реакции. Оказалось, что даже минимальное изменение одних аминокислот приводит к потере работоспособности фермента, в то время как другие аминокислоты можно было изменять в довольно значительной степени без какого-либо эффекта. Ключевыми оказались аминокислоты 12 (принадлежащая к разновидности гистидин), 41 (лизин) и 119 (снова гистидин).
Кажется вполне вероятным, что, несмотря на то что эти аминокислоты довольно значительно отстоят друг от друга в цепочке, все три вместе представляют собой единый активный элемент. Ведь пептидная цепь — не прямой стальной прут, а скорее гибкая нить, которую можно сложить таким образом, чтобы звенья № 12, 41 и 119 оказались рядом. Тогда образуется что-то вроде устойчивого соединения из трех аминокислот.
В «сложенном» таким образом виде молекулу фермента удерживают особого вида связи между определенными группами атомов. Очень важна роль аминокислоты цистин в одной из подобных связей. Цистин — это в какой-то степени двойная молекула. Каждая половинка ее является сама по себе полноценной аминокислотой, а соединяются между собой эти половинки посредством цепочки, в которую входят два атома серы (так называемый «дисульфидный мост»). Одна половинка молекулы цистина может входить в состав одной пептидной цепочки, а другая — другой. Таким образом, получается, что дисульфидный мост удерживает вместе не просто две половинки одной молекулы, а две отдельные пептидные цепочки (или два участка одной и той же цепочки).
В молекуле рибонуклеазы имеются четыре таких дисульфидных моста, связывающие различные участки пептидной цепочки. Помимо них, существуют еще и другие, более слабые виды дополнительных связей в молекуле, и все они вместе прочно удерживают пептидную цепочку в сложенном виде, благодаря чему в ней и складывается активный элемент.
Но если для формирования активного элемента в молекуле необходимыми являются лишь несколько присутствующих в ней аминокислот, то зачем нужна сотня с лишним остальных? Некоторые из причин уже очевидны.
Если рибонуклеазу разрубить на две части, скажем, по двадцатой аминокислоте, то ни одна из получившихся частей не будет работоспособна. |