Теперь очевидно, что главной химической реакцией живой материи является способность молекулы ДНК воспроизводиться. Эта реакция — основной закон жизни, все остальное — лишь комментарии. Следовательно, если мы сможем образовать молекулу ДНК из простых, неживых химических соединений, то это и будет синтезом изначальной жизни. Конечно, между этим достижением и синтезом человека может лежать еще целая пропасть научной работы, но все же синтез ДНК стал бы первым настоящим шагом по мосту через эту пропасть. А граница между живой и неживой материей была бы пересечена раз и навсегда.
А как же пересекла эту границу в свое время сама природа? Ведь это произошло миллиарды лет назад, когда не было еще ни ферментов, которые могли бы облегчить работу, ни других нуклеиновых кислот, которые могли бы послужить шаблоном.
Скорее всего, на доисторической, безжизненной еще Земле лишь достаточно простые по строению молекулы могли присутствовать в большом количестве в океане, который принято считать колыбелью жизни, и в атмосфере. Состав этих молекул можно приблизительно высчитать по общему составу молодой Земли (а его, в свою очередь, по известному нам составу Солнца и всей Вселенной в целом) с применением известных нам химических законов.
Итак, предположим, что мы взяли исходные молекулы воды, аммиака, метана, синильной кислоты и прочих и стали подвергать их энергетическому воздействию в виде ультрафиолетового и радиоактивного излучения, потоков электронов и электрических разрядов (молний). Всего этого в условиях доисторической Земли было предостаточно. Что же произойдет?
Чарлз Дарвин, основатель теории эволюции путем естественного отбора, задался этим вопросом еще сто лет назад. Его интересовало, не мог ли химический состав живых существ самостоятельно зародиться из такой системы; не имела ли место некая химическая эволюция, аналогичная эволюции биологической.
Первым, кто попытался с помощью эксперимента найти ответ на этот вопрос, стал Мелвин Кальвин из Калифорнийского университета. В 1951 году он стал подмечать, что под воздействием энергонесущего излучения из простых веществ могут образовываться сложные.
В 1952 году Стэнли Миллер из Чикагского университета продвинулся еще дальше в этом вопросе. Он поместил простые химические вещества вроде тех, что присутствовали на доисторической Земле, в камеру, совершенно лишенную какой бы то ни было живой материи, и на протяжении недели подвергал их воздействию электрических разрядов. Через неделю в смеси обнаружилось достаточно много гораздо более сложных веществ, в том числе четыре аминокислоты, аналогичные встречающимся в составе природных белков.
С тех пор целый ряд других химиков, в их числе Филипп Абельсон из Института Карнеги и Джоан Ото из Хьюстонского университета, проводили подобные же эксперименты. Под воздействием энергии в различных формах из простых веществ во всех проводимых экспериментах образовывались сложные, а из этих сложных — еще более сложные. И все получаемые сложные вещества оказывались сходными с теми, что обнаруживаются в составе живых тканей. Видимо, когда-то давно и естественный путь зарождения жизни был таким же — вслепую и наугад, но неуклонно вперед.
В частности, цейлонско-американский биохимик Сайрил Поннамперума во время работы в Научно-исследовательском центре Эймса при НАСА продемонстрировал процесс пошагового производства молекул нуклеотидов — строительного материала для нуклеиновых кислот. В нуклеотиде содержится атом фосфора. Следовательно, в исходный состав были добавлены простые фосфорсодержащие соединения. Совместно с такими учеными, как Карл Саган и Руфь Маринер, Поннамперума провел серию экспериментов, в результате которых была получена полноценная нуклеотидная молекула. К 1963 году уже удалось синтезировать нуклеотиды в особо энергетически насыщенной форме, из которых можно создавать и сами нуклеиновые кислоты.
И вот в сентябре 1965 года Поннамперума объявил о том, что ему удалось продвинуться еще на шаг — объединить два нуклеотида в динуклеотид, в котором оба нуклеотида были соединены с помощью той же самой химической связи, что объединяет нуклеотиды и в естественных нуклеиновых кислотах. |