Тогда химики сосредоточили свои усилия на снижении температуры, и к 1880-м годам удалось перевести в жидкую форму кислород и азот. Азот дался труднее. Жидкий азот закипает при -195 °С, а водород даже и при этой температуре остается газом.
И только в 1895 году английский химик Джеймс Дьюар сумел первым получить жидкий водород. Температура кипения этого вещества оказалась -53 °С, лишь на 20 градусов выше абсолютного нуля — самой нижней точки температурной шкалы.
Итак, оказалось, что жидкий водород получать можно, а если затратить достаточно усилий — его можно получать и в большом количестве. Однако еще на протяжении пятидесяти лет он оставался не более чем лабораторным курьезом.
Главной проблемой в отношении жидкого водорода было то, что эта жидкость крайне нестабильна и в любой момент может испариться. Самая тщательная лабораторная изоляция помогала лишь до определенной степени, поскольку жидкий водород сам по себе генерирует некоторое количество тепла.
Это явление заслуживает отдельного объяснения. При обычных условиях водород существует в виде скопления молекул, каждая из которых представляет собой пару атомов.
Каждый атом водорода состоит в основном из одной центральной постоянно вращающейся частицы, именуемой «протоном». В одних молекулах водорода протоны обоих атомов вращаются в одном направлении; в других — в противоположном. Первая разновидность водорода получила название «ортоводород», а вторая — «параводород». В обычном газообразном водороде три четверти молекул — это ортоводород, а оставшаяся четверть — параводород.
В молекуле ортоводорода содержится больше энергии, чем в молекуле параводорода. При переходе водорода в жидкую форму ортомолекулы постепенно превращаются в менее энергичные парамолекулы. Разница в энергетическом уровне орто- и параводорода в таком случае высвобождается в виде тепла.
Постепенное превращение ортомолекул в парамолекулы приводит к постепенному же нагреванию общей массы жидкого водорода и выпариванию последнего со скоростью один процент в час, даже если камера с водородом идеальным образом изолирована. Более того, если камера не вентилируется, то давление в ней может при этом возрасти до опасного уровня.
Напрашивается решение проблемы путем предварительного превращения всех ортомолекул в парамолекулы. Тогда мы получим чистый параводород, который, при должной изоляции, можно держать в жидком состоянии очень долго.
Существуют вещества, способные послужить катализаторами процесса и ускорить такое превращение. К примеру, уже в 1929 году было обнаружено, что ускорению нужного превращения способствует угольный порошок. А в 1952 году, когда нужда заставила, ученые выяснили, что с помощью особым образом обработанного оксида железа можно за несколько секунд превращать ортоводород в параводород в больших количествах.
После доработки процедуры в промышленных масштабах стало возможным массовое получение жидкого водорода в такой форме, когда в условиях должной изоляции путем испарения жидкость теряет один процент не за час, а за трое суток. Цена производства такого водорода упала до одного доллара за килограмм, и сейчас строятся заводы, где будет вырабатываться по двадцать и более тонн водорода в сутки. Потребность человечества в водороде удовлетворена полностью и останется удовлетворенной, несмотря на свой постоянный рост.
Кажется, брезжит еще один, новый способ использования водорода — для производства электроэнергии. Как правило, электричество вырабатывается генератором, работающим на тепловой энергии горящего угля или мазута (или на энергии падающей воды). При переходе энергии из тепловой формы в электрическую значительная часть ее неизбежно теряется. Если бы можно было объединять топливо с кислородом напрямую в единой электрической батарее (так называемой «топливной батарее»), то весь процесс в целом можно было бы сделать более эффективным. |