Изменить размер шрифта - +
После окончательного формирования нейтральной атмосферы и появления излишков кислорода в свободном виде в верхних слоях атмосферы действительно сформировался защитный кислородный, а затем и озоновый слой. Ультрафиолетовое излучение перестало достигать поверхности планеты, и фотодиссоциация прекратилась. Но видимый свет по-прежнему продолжал проникать в глубь атмосферы, и фотосинтез продолжался. Фотосинтез, в отличие от фотодиссоциации, не саморегулирующийся процесс в этом отношении. В воздух выделялось все больше и больше кислорода, и атмосфера Земли, пройдя стадию нейтральности, стала окислительной.

Пусть так, но почему углекислый газ, накапливаясь в атмосфере, не привел к парниковому эффекту и земные океаны не закипели, подобно венерианским?

К счастью, распад молекул воды не единственная химическая реакция, вызываемая фотосинтезом. Образующиеся в результате распада молекулы водорода не попадают в атмосферу, чтобы потом постепенно улетучиться в космос. Вместо этого, водород принимает участие в ряде химических реакций, заканчивающихся соединением его с углекислым газом для образования крахмала и других составляющих растительных клеток.

Таким образом, фотосинтез, хоть и приводит к выбросу в атмосферу кислорода, не выбрасывает при этом и водород, а использует его для очистки атмосферы от углекислого газа. В итоге земная атмосфера стала практически полностью состоять из азота и кислорода.

Когда именно все это происходило — точно неизвестно. Самые правдоподобные предположения, основанные на химическом составе древних камней, говорят о том, что свободный кислород появился в атмосфере один-два миллиарда лет назад, а жизнь на Земле к тому моменту уже существовала еще один-два миллиарда лет.

Примерно 600 000 000 лет назад количество кислорода в атмосфере составляло уже как минимум одну десятую от сегодняшнего. Это вызвало биологическую революцию, и наступил, по терминологии геологов, кембрийский период.

До кембрийского периода, когда в атмосфере не было или почти не было кислорода, простейшие формы жизни получали энергию из сложных органических молекул путем разложения их на более простые без произведения каких-либо принципиальных изменений в их химическом строении. Такой процесс называется «ферментация».

Однако, когда в атмосфере появилось более-менее значительное количество кислорода, живые существа, в метаболизме которых используется объединение питательных веществ с атмосферным кислородом, смогли получать из того же количества питательных веществ в двадцать раз больше энергии.

Получение доступа к такому объему энергии стало для жизни сильнейшим толчком к развитию. За сто миллионов лет кембрийского периода появились первые сложные живые формы и разнообразие их многократно возросло.

Возникли первые многоклеточные организмы из собравшихся воедино клеток. Оказавшись в составе таких организмов, определенные группы клеток получили возможность специализироваться. Некоторые из них научились быстро сокращаться, другие — проводить электрические импульсы. Так появились мышцы и нервы. Для придания организму структуры, не позволяющей погибнуть под собственной тяжестью, а заодно и для защиты от внешних воздействий появились раковины и другие жесткие конструкции. Казалось, нет предела изобретательному разнообразию форм жизни, получившей наконец-то доступ к настоящим объемам энергии.

Эти раковины и другие жесткие конструкции оставались и после смерти самого организма и за тысячи лет окаменели. Камни кембрийского периода хранят очень много подобных останков, именуемых «окаменелостями», в то время как в камнях, датируемых более ранними периодами, окаменелости отсутствуют.

Предположительно, примерно 400 000 000 лет назад содержание кислорода в атмосфере достигло сегодняшнего уровня. Озоновый щит прочно прикрывал планету, и ультрафиолетовые лучи достигали ее поверхности в столь малом количестве, что живые формы вполне могли долго находиться на открытом солнце без вреда для себя.

Быстрый переход