Но на практике это не так просто. Разглядеть что-то, расположенное от нас за миллионы световых лет, — крайне сложно. Оттуда до нас доходят лишь скудные частицы размытого света. Если эти далекие галактики чем-то и отличаются от нашей, то мы, скорее всего, не сможем заметить этих отличий. Для того чтобы отличия были заметны, они должны быть огромными и очень принципиальными.
До 1950 года никаких таких отличий отметить не удавалось. Но вот была разработана новая технология, и появился новый инструмент, позволяющий еще дальше проникнуть в глубины космоса.
В 1931 году американский радиоинженер Карл Янский занимался решением одной совершенно не имеющей никакого отношения к астрономии задачи, связанной с расчетами статических помех радиопереговоров. Среди источников помех он обнаружил один, происхождение которого осталось неясным; Янский предположил, что помехи приходят извне, из открытого космоса.
В то время его открытие не вызвало интереса; в первую очередь, потому, что ему не нашлось очевидного практического применения. Космические радиоволны оказались очень короткими, и достаточно чувствительных устройств, чтобы улавливать эти микроколебания, на тот момент еще не было. Однако позже оказалось, что радары работают именно на такого рода излучении, и после Второй мировой войны в ходе разработки радаров устройства для улавливания коротковолнового радиоизлучения из открытого космоса появились на свет. Так родилась «радиоастрономия» и в небеса уставились огромные приемники излучения (радиотелескопы).
Были получены радиоволны от Солнца и от нескольких туманоподобных объектов, которые ученые сочли остатками взорвавшихся звезд; были получены радиоволны даже из центра нашей Галактики, скрытого от непосредственного наблюдения с помощью обычного света огромными светопоглощающими пылевыми облаками, расположенными между центром Галактики и Солнечной системой. Оказалось, что радиоволны могут проходить сквозь эти облака.
К 1950 году на карте небес можно было отметить уже более тысячи различных источников радиоволн, но лишь немногие из них можно было определить как видимые объекты. Проблема в том, что даже очень короткие радиоволны — все же гораздо длиннее световых, а чем длиннее волна, тем более размытый образ она рисует. Найти точный источник слабого далекого радиосигнала не проще, чем разглядеть мелкую картинку через замороженное стекло. В обоих случаях видны только расплывчатые пятна.
Тем не менее один особенно мощный источник радиоволн (получивший название «Лебедь А») был, после долгих терпеливых трудов, установлен достаточно точно к 1951 году. В районе, определенном как область этого источника, американский астроном немецкого происхождения Вальтер Бааде обнаружил галактику странной формы. При более подробном рассмотрении оказалось, что это не одна, а две галактики, находящиеся в процессе столкновения. Похоже, именно эта пара сталкивающихся в 700 000 000 световых лет отсюда галактик и представляет собой источник обнаруженного астрономами пучка радиоволн.
Так впервые стало ясно, что можно обнаруживать радиоволны с огромных расстояний. На самом деле «радиогалактики», испускающие такие мощные радиоволны, как «Лебедь А», можно без особых трудов обнаруживать даже с таких расстояний, с каких света доходит слишком мало для самых чувствительных оптических телескопов.
Получается, что с помощью радиотелескопов можно проникать гораздо дальше в космос, а значит, получать информацию из очень отдаленных эпох прошлого.
У астрономов появилась долгожданная возможность. Допустим, что все или почти все источники радиоволн — это отдаленные галактики, подвергающиеся неким катастрофам, например сталкивающиеся или взрывающиеся, и поэтому испускающие радиоволны в чрезмерно большом количестве. Понятно, что такие катастрофы происходят далеко не с каждой галактикой, но галактик во Вселенной — миллиарды, так что ничего нет удивительного в том, что несколько тысяч «радиогалактик» в ней найдется. |