И она с этого момента снова способна поглощать фотоны.
А избыточная энергия, потерянная ими, и есть та таинственная «жизненная сила», о которой много спорили натурфилософы прошлых веков. Питаясь ею, жизнь существует.
Потерянную «горячими» электронами энергию в клетке быстро подхватывают вещества-энерготранспортеры. Они функционируют по принципу аккумуляторной батареи: одни, заряжаясь энергией, переносят ее ко всем жизнедействующим органам клетки, где возникает потребность в энергии. Там разряжаются и в виде уже несколько иных веществ, с более бедными энергией химическими связями, снова возвращаются к хлорофиллу на подзарядку.
Аденозиндифосфат, или сокращенно АДФ, и аденозинтрифосфат — АТФ циркулируют в клетке между источником — хлорофиллом и потребителями, разнося небольшими порциями энергию.
АДФ — разряженная форма. Она заряжается, присоединяя одну фосфатную группу, и превращается в АТФ. В результате этого превращения энергия света преобразуется в энергию химических связей. Ведь АТФ на целую фосфатную группу богаче энергией, чем АДФ.
В тех органеллах клетки, где идет синтез глюкозы, белков, жиров или другие процессы, поглощающие энергию: мышечная работа, мышление, деление ядер и прочее, АТФ, потеряв фосфатную группу и вместе с ней часть энергии, снова превращается в АДФ.
И так без конца!
Биохимики еще не знают в точности, какие вещества — проводники электронов включаются в замкнутую цепь вокруг хлорофилла и, передавая друг другу «горячие» электроны, так сказать, «остужают» их. Извлеченную из электронов энергию они отдают на приготовление АТФ из АДФ.
Как «едят» свет животные
АТФ и АДФ — универсальные переносчики энергии в клетке, и в растительной и в животной. Благодаря их трудам в растениях идет изготовление глюкозы, жиров и белков. И в клетках животных энергию, извлеченную из этих веществ, разносят ко всем потребителям тоже молекулы АТФ.
Но прежде чем добыть из консервов энергию, нужно их вскрыть. Какой же консервный нож изобрела природа?
Нож этот — кислород! Окисляя органические вещества, медленно сжигая их в своих топках, клетки освобождают скрытую в них энергию.
Горение — это цепная реакция окисления. При ней сразу выделяется слишком много энергии. Ясно, что для клеток цепная реакция не годится, иначе они и сами сгорят. Здесь энергия должна поступать такими ультрамалыми дозами, чтобы молекулы не разрушались, вещества-транспортеры успевали ее всю разносить по потребителям, а клетка не перегревалась.
Консервы «расконсервируются» поэтапно. Сначала от глюкозы, например, отрываются два атома водорода и соединяются с кислородом. Образуется вода, и освобождается энергия, которую тут же подхватывают молекулы АДФ и, обратясь в АТФ, следуют по назначению. Затем еще два атома водорода в соединении с кислородом дают жизнь воде и полезной энергии и т. д. Когда весь водород кончается, вещества-регуляторы направляют кислород на атомы углерода. В результате имеем углекислый газ и опять освобожденную энергию.
Вещества-регуляторы, которые только что были упомянуты, это окислительные ферменты, иначе говоря, катализаторы. Без них медленное окисление невозможно. Они работают по конвейерной системе, располагаясь цепочкой в строгом порядке. Около шести разных ферментов передают друг другу атомы сжигаемого горючего. При каждой передаче освобождается небольшая порция энергии, заключенной в химических связях солнечных консервов.
Где же работают конвейеры окислительных ферментов? В каких топках сжигают клетки топливо жизни?
В митохондриях. Пора нам к ним вернуться.
Топливо жизни — переваренная и растворенная в крови пища и рядом с ней «консервный ключ» — кислород, соединенный с эритроцитами, текут по артериям. |