Изменить размер шрифта - +
(В русском языке используется термин «атомная масса». — Примеч. пер.)

Короче, независимо от того, знает ученый разницу между понятиями «масса» и «вес», он тем не менее пользуется устоявшимися терминами. Здесь он похож на даму, которая не видела разницы между выражением «единственный сын» и «единственный ребенок».

Но продолжим. В предыдущей главе я говорил о массах астрономических объектов в терминах массы Земли. Юпитер в 318 раз массивнее Земли; Солнце в 330 000 раз массивнее Земли; Луна в <sup>1</sup>/<sub>81</sub> раза массивнее Земли и так далее.

Но какова масса Земли в килограммах (или в любых других единицах массы, которые мы можем сопоставить со знакомыми нами объектами)?

Чтобы определить это, мы должны воспользоваться уравнением Ньютона, приведенным в предыдущей главе, то есть:

F = GmM/d<sup>2</sup> (уравнение 1).

Если это уравнение применять, например, к падающему камню, то F — это гравитационная сила, воздействующая на камень, G — универсальная гравитационная постоянная, m — это масса камня, M — масса Земли, a d — расстояние от центра камня до центра Земли.

К сожалению, из пяти приведенных величин человек в XVIII столетии мог определить только три. Масса камня (m) может быть найдена легко, а расстояние от центра камня до центра Земли (d) были способны определять еще древние греки. Сила тяготения (F) может быть вычислена путем измерения ускорения, с которым камень реагирует на гравитационное поле. Эти измерения произвел Галилей.

Только значения гравитационной постоянной и массы Земли остаются неизвестными. Если узнать значение G, то сразу можно узнать и значение массы Земли. И наоборот, если узнать M, можно быстро определить универсальную гравитационную постоянную.

Так что же нам делать?

Масса Земли может быть определена непосредственно, если бы мы могли провести над ней определенные манипуляции: положив на чашечку весов, сравнивая с каким-нибудь стандартным весом или что-то в этом роде. Однако с Землей ничего подобного сделать нельзя, так что нам придется об этом забыть.

Тогда рассмотрим G. Это универсальная гравитационная постоянная, и она остается одинаковой для любого гравитационного поля. Это означает, что нам не обязательно использовать лишь гравитационное поле Земли для его определения. Вместо этого можно использовать гравитационное поле любого другого объекта, поддающегося манипуляциям.

Предположим, что мы подвешиваем какой-нибудь объект на пружине; она тут же начнет удлиняться благодаря притяжению Земли. Затем мы поместим под подвешенный предмет большой камень. Теперь гравитационное поле камня суммируется с гравитационным полем Земли, в результате чего пружина немного удлинится.

По величине дополнительного удлинения пружины мы можем определить интенсивность гравитационного поля камня.

Это выглядит следующим образом:

f = Gmm'/d<sup>2</sup> (уравнение 2),

где f — интенсивность гравитационного поля камня (измеренное дополнительным удлинением пружины), G — гравитационная постоянная, m — масса подвешенного на пружине объекта, m' — масса камня, a d — расстояние между центром камня и подвешенного объекта.

В этом уравнении может быть определена любая величина, за исключением G, так что мы можем переписать уравнение 2 в следующем виде:

G = fd<sup>2</sup>/mm' (уравнение 3)

и сразу получаем значение G. Как только мы узнаем это значение, то сможем подставить его в уравнение 1, которое позднее решим для M (массы Земли) следующим образом:

M = Fd<sup>2</sup>/Gm (уравнение 4).

Но здесь возникает трудность. Гравитационное поле камня столь слабо по отношению к массе Земли, что произвести необходимые измерения крайне затруднительно.

Быстрый переход