Изменить размер шрифта - +
Это означает, что масса любого фотона может быть вычислена при помощи этого уравнения и иметь величину от 0 и до ∞.

Мы также знаем о фотонах, что они движутся (относительно любого наблюдателя) со скоростью света. В самом деле, свет имеет эту скорость потому, что он «состоит» из фотонов.

Теперь, когда нам известны эти две вещи, преобразуем уравнение 2:

 (уравнение 3).

Для фотонов v = с, и теперь уравнение 3 приобретает вид:

m(0) = m<sub>0</sub> (уравнение 4).

Если бы фотон был обыкновенным, имеющим массу объектом и перемещался бы со скоростью света, его масса (m) была бы бесконечной. Уравнение 4 тогда бы приобрело вид ∞ × (0) = m<sub>0</sub>, а подобное уравнение в математике недопустимо.

Фотон, однако, может приобрести значение для m от 0 до ∞ (хотя он и перемещается со скоростью света), но для любого значения m между 0 и ∞ значение m<sub>0</sub> в уравнении 4 равно 0.

Это означает, что для фотонов масса покоя (m<sub>0</sub>) равна нулю. Если масса покоя равна нулю, значит, объект может двигаться со скоростью света.

(Это дает ответ на вопрос, который постоянно мне задают корреспонденты, считая, что они нашли противоречие в логике Эйнштейна. Вопрос звучит так: «Если что-либо, двигающееся со скоростью света, имеет бесконечную массу, как могут фотоны не иметь бесконечную массу?» Ответ заключается в том, что следует различать частицы, чья масса покоя равна 0, и частицы, у которых масса покоя больше 0. К сожалению, корреспонденты будут задавать свой вопрос вне зависимости от того, как часто я буду им это объяснять.)

 

Но пойдем дальше. Предположим, что фотон движется со скоростью, меньшей скорости света. В этом случае величина под квадратным корнем в уравнении 3 станет больше нуля — и к тому же будет умножена на массу m, величина которой больше нуля. Если два значения, каждое из которых больше нуля, умножить, тогда результат (в данном случае m<sub>0</sub>) должен быть больше нуля.

Это означает, что, если фотон движется со скоростью, меньшей скорости света (не важно, насколько меньшей), его масса покоя не может быть равной нулю. То же самое будет справедливо по отношению к фотону, двигающемуся со скоростью, большей скорости света. (В дальнейшем мы увидим, что с уравнением на скоростях, больших скорости света, происходят довольно забавные вещи — но при всем этом следует помнить, что масса покоя в этом случае уже не может быть равна нулю.)

Физики настаивают на том, что масса покоя должна быть постоянной для любого данного тела, поскольку все феномены, которые они измеряют, имеют смысл только в этом случае. Для того чтобы масса покоя фотона оставалась постоянной, фотон всегда должен двигаться со скоростью света, и ни на йоту больше или меньше — конечно, при условии движения сквозь вакуум.

Когда фотон возникает, он немедленно, без какой-либо задержки во времени, начинает двигаться прочь из точки происхождения со скоростью 186 281 миль/с. Это может звучать парадоксально, поскольку подразумевает бесконечное ускорение и, таким образом, бесконечную силу — но стоп…

Второй закон Ньютона, связывающий силу, массу и ускорение, применим только к телам с массой покоя больше нуля. Он действительно неприменим к телам, чья масса покоя равна нулю.

Таким образом, если энергия вливается в обыкновенное тело при обыкновенных условиях, его скорость возрастает; если энергия вычитается, его скорость уменьшается. Если энергия вливается в фотон, его частота (и масса) увеличивается, но скорость остается неизменной; если энергия вычитается, его частота (и масса) уменьшается, но скорость также остается неизменной.

Но если все это так, то кажется лишенным здравого смысла говорить о «массе покоя» в связи с фотонами, поскольку это подразумевает, что фотон имеет в покое массу, а фотон никогда не может быть в покое.

Быстрый переход