Изменить размер шрифта - +
Каждая спектральная составляющая сдвигается к красному краю спектра. Естественно, чем дальше галактика, тем больше энергии ее свет теряет и тем больше смещение в красную сторону. Это было бы прекрасное объяснение, которое позволило бы внести ясность в вопрос, не давая нашей Галактике какого-то особого места среди других. Все бы зависело лишь от расстояния.

Однако объяснение через «усталый свет» (как его стали называть) имеет свои трудности. Если не нарушать закона сохранения энергии, который ученые защищают особенно рьяно, можно предположить, что, когда свет постепенно теряет свою энергию, ее приобретает что-то другое. Но до сих пор астрономам не удалось обнаружить, каким способом энергия света может, проходя между галактиками, измениться таким образом, чтобы получилось наблюдаемое красное смещение. Нужного получателя энергии нет. (К примеру, стоящие на пути света молекулы будут поглощать фотон из падающего на них света, но не обязательно «переизлучат» фотон с меньшей энергией в том же самом направлении, в котором двигался фотон поначалу. Газ и пыль будут поглощать или рассеивать свет, но не будут делать чего-либо еще, а это «что-либо еще» обязательно требуется для того, чтобы мы наблюдали свет.)

Кроме того, потери энергии светом были бы заметны не только в виде смещения в красную сторону в свете галактик — их можно было бы найти при наблюдениях внутри нашей Галактики, а этого нет.

Таким образом, гипотеза «усталого света» оказалась несостоятельной как в теории, так и в наблюдениях, и ее пришлось (с неохотой) отбросить — по крайней мере до появления новых фактов.

Но произошло следующее. В 1916 году Эйнштейн выдвинул общую теорию относительности, в которой было положение, что свет, движущийся против гравитационного поля, теряет энергию (что не противоречит закону сохранения энергии). Свет, идущий от любой звезды, движется против поля тяготения, так что он покажет гравитационное смещение в красную сторону.

Тогда может быть такое, что красное смещение галактик является по происхождению гравитационным?

Ответ дать было трудно, поскольку при обыкновенных обстоятельствах это смещение столь мало, что его не замечали. Чтобы смещение можно было различить, требовалось не только очень большое гравитационное поле — оно должно было иметь большую плотность. А поле достаточно большой плотности могло иметь только большое количество материи, заключенной в малый объем, к примеру белые карлики.

Тогда предположим, что смещение в красную сторону света отдаленных галактик имеет гравитационное происхождение и говорит об их невероятной плотности. Но даже если сделать такое предположение, то возникает новый вопрос: если объяснять красное смещение увеличением плотности галактик по мере их удаления от нас, то почему именно Земля является центром, от которого происходит увеличение плотности галактик?

 

Приходится снова вернуться к скорости удаления галактик как к единственному разумному объяснению красного смещения и странной связи между скоростью и расстоянием от нас.

Хаббл справился с этой задачей. Он перебрал все возможные методы определения относительных расстояний до галактик. Среди самых ближайших довольно просто различить группу пульсирующих звезд под названием цефеиды. Из их скорости пульсаций и видимой яркости можно определить относительные расстояния до них (и, таким образом, относительные расстояния до содержащих их галактик).

В более отдаленных галактиках таких звезд, как цефеиды, нет — зато есть несколько исключительно ярких звезд. Предположим, что существует какой-то предел свечения и что самая яркая звезда в каждой галактике находится на этом пределе. Предположим также, что все галактики в целом имеют примерно равное свечение. В этом случае можно определить относительные расстояния до содержащих эти звезды галактик.

Наконец, где галактики слишком далеки, чтобы были заметны отдельные звезды, можно предположить, что из их общей яркости также можно определить относительные расстояния до них.

Быстрый переход