Изменить размер шрифта - +
Однако простота машины Тьюринга, помимо всего прочего, делает ее очень медленной в том смысле, что даже простое вычисление требует гигантского числа шагов. Она совершенно непрактична, но из-за простоты отлично подходит для разбора теоретических вопросов об ограничениях, связанных с вычислениями.

Первая важная теорема Тьюринга доказывает существование универсальной машины Тьюринга, при помощи которой можно смоделировать любую конкретную машину. Программа конкретной машины зашифрована на ленте универсальной машины еще до начала вычислений. Правила перехода сообщают универсальной машине, как следует переводить эти символы в инструкции и исполнять их. Архитектура универсальной машины – важный шаг по направлению к реальному компьютеру, где программа размещается в памяти. Мы не строим для каждой задачи новый компьютер с жестко, на уровне «железа», заданной программой – ну разве что для каких-то совершенно особых задач.

Вторая его важная теорема – вариация на тему теорем Гёделя; она доказывает, что задача останова для машины Тьюринга неразрешима. В этой задаче требуется найти алгоритм, который мог бы решить, получив на вход программу для машины Тьюринга, остановится ли машина когда-нибудь, получив ответ, или будет работать до бесконечности. Предложенное Тьюрингом доказательство, что такого алгоритма не существует – то есть что задача останова неразрешима, – предполагает его существование, а затем применяет результирующую машину к ее собственной программе. Однако она при этом хитроумно преобразуется таким образом, что модель останавливается в том, и только том случае, если первоначальная машина этого не делает. Это приводит к противоречию: если модель останавливается, то она не останавливается; если она этого не делает, то она это делает. Мы видели, что доказательство Гёделя в конечном итоге кодирует утверждение вида «это утверждение ложно». Доказательство Тьюринга проще и больше напоминает карточку, на двух сторонах которой написано:

Утверждение на другой стороне этой карточки истинно.

Утверждение на другой стороне этой карточки ложно.

Каждое утверждение за два шага приводит к отрицанию самого себя.

Тьюринг представил свою статью в журнал Proceedings of the London Mathematical Society, не зная, что несколькими неделями раньше американский специалист по математической логике Алонзо Чёрч опубликовал статью «Нерешаемая задача в элементарной теории чисел» в American Journal of Mathematics. В ней он предложил еще одну альтернативу Гёделеву доказательству неразрешимости арифметики. Доказательство Чёрча было чрезвычайно сложным, но он опубликовал его первым. Ньюман убедил журнал все же опубликовать статью Тьюринга, поскольку его доказательство было намного проще – и концептуально, и структурно. Тьюринг переработал статью, включив в нее ссылку на статью Чёрча, и в 1937 г. она вышла. У этой истории счастливый конец, поскольку после этого Тьюринг отправился в Принстон готовить докторскую диссертацию под руководством Чёрча. Его диссертация была опубликована в 1939 г. и называлась «Логические системы, основанные на ординалах».

 

* * *

Не слишком удачный 1939 г. был отмечен началом Второй мировой войны. Понимая, насколько велика вероятность войны, и прекрасно зная, какую серьезную роль в современной войне играет криптография, глава Секретной разведывательной службы (Secret Intelligence Service, SIS, или MI6) приобрел поместье, которое как нельзя лучше подходило для организации шифровальной школы. Блетчли-парк представлял собой особняк, выстроенный в странной смеси архитектурных стилей, на территории в 235 га. Дом был предназначен под снос, на его месте планировалось построить жилой район. Он стоит до сих пор, вместе с хозяйственными постройками и времянками военных лет; сегодня Блетчли-парк – туристический объект с тематической экспозицией, посвященной работе военных дешифровщиков.

Быстрый переход