Изменить размер шрифта - +

Вклад Тёрстона во многие области геометрии, от топологии до динамики, обширен. Его деятельность отличалась замечательным свойством визуализировать сложные математические понятия. Когда у него спрашивали доказательство, Тёрстон обычно рисовал картинку. Зачастую его рисунки раскрывали скрытые связи, не замеченные другими исследователями. Еще одной характерной чертой Тёрстона было его отношение к доказательствам: он часто оставлял детали за скобками, поскольку они представлялись ему очевидными. Когда кто-то просил его объяснить непонятое доказательство, он нередко тут же, на месте, придумывал новое и говорил: «Возможно, это вам больше понравится». Для Тёрстона вся математика была единым взаимосвязанным целым, и он знал ее, как другие знают собственный огород.

Тёрстон умер в 2012 г. после операции по удалению меланомы, в результате которой он потерял правый глаз. Во время лечения он продолжал исследования и доказывал новые фундаментальные результаты в дискретной динамике рациональных отображений на комплексной плоскости. Он ездил на математические конференции и старался пробудить в молодых людях интерес к своему любимому предмету. Несмотря ни на какие препятствия, он никогда не сдавался.

 

Люди математики

 

Итак, что мы узнали, познакомившись с нашими значимыми фигурами, чьи новаторские идеи открыли для науки новые математические просторы?

Самый очевидный вывод, который можно сделать, – они многообразны. Первопроходцы математики обнаруживаются во всех периодах истории, во всех культурах и слоях общества. Истории, которые я отобрал для вас, перекрывают промежуток протяженностью в 2500 лет. Их герои жили в Греции, Египте, Китае, Персии, Индии, Италии, Франции, Швейцарии, Германии, России, Англии, Ирландии и Америке. Некоторые из них родились в богатых семьях – это Ферма, Кинг, Ковалевская. Многие принадлежали к среднему классу. Некоторые родились в бедности – Гаусс, Рамануджан. Одни происходили из семей ученых – Кардано, Мандельброт. Другие – нет: это опять же Гаусс и Рамануджан, Ньютон, Буль. Кто-то жил в бурные времена – Эйлер, Фурье, Галуа, Ковалевская, Гёдель, Тьюринг. А кому-то повезло жить в более стабильном обществе или, по крайней мере, в более стабильной его части – Мадхава, Ферма, Ньютон, Тёрстон. Одни из них были политически активны – Фурье, Галуа, Ковалевская. Первые двое в результате оказались в тюрьме. Другие держались в стороне от политики – Эйлер, Гаусс.

Среди моих героев можно, конечно, найти частные закономерности. Кто-то из них вырос в интеллектуальных семьях. Другие были музыкальны. Третьи умели работать руками, а кто-то не мог починить и велосипед. Некоторые быстро развивались и уже в раннем возрасте демонстрировали недюжинный талант. Случайные и пустячные на первый взгляд совпадения – выбор обоев для детской, подслушанный разговор, одолженная книга – пробуждали в них негаснущий интерес к математике. Многие поначалу пытались избрать для себя иной жизненный путь – преимущественно юриста или священнослужителя. Одних родители поощряли и гордились ими, другим позволяли следовать своему призванию, пусть и неохотно, а кому-то и вовсе запрещали изучать математику.

Некоторые из них были людьми эксцентричными. Один был мошенником. Несколько человек страдали душевными заболеваниями. Большинство были нормальны – в той мере, в какой любого из нас можно считать нормальным человеком. Большинство вступали в брак и заводили детей, но некоторые – Ньютон, Нётер – обходились без этого.

Большинство из них были мужчинами – виной тому социальные предубеждения. До недавнего времени считалось, что женщины, по своей биологии и темпераменту, не годятся для математики да и вообще для науки. Говорили, что их образование следует ограничивать домашними навыками: пяльцы, а не производные.

Быстрый переход