Изменить размер шрифта - +
Его главной задачей было вычисление полиномиальных функций, таких как квадраты и кубы, или более сложные формы, методами исчисления конечных разностей.

Основная идея проста. Закономерности в этих функциях проявляются, если рассматривать разности между последовательными величинами. К примеру, начнем с кубов:

0 1 8 27 64 125 216.

Разности между последовательными числами выглядят так:

1 7 19 37 61 91.

Возьмем разности еще раз:

6 12 18 24 30.

И еще:

6 6 6 6.

После этого простая закономерность становится очевидной. (Она очевидна, строго говоря, уже на предыдущем шаге; и на предпредыдущем, хотя и в меньшей степени.) Эта закономерность по-настоящему важна, поскольку дает возможность просчитать весь процесс в обратном порядке. Итоговая серия шестерок позволяет восстановить последовательность непосредственно перед ней; суммирование получившихся чисел дает предыдущую последовательность; наконец, суммирование этой последовательности дает кубы. Аналогичный метод работает для любой полиномиальной функции. Нужно только уметь складывать. В умножении, которое представляется более сложным, необходимости нет.

Идею привлечения к вычислениям механических помощников трудно назвать новой. В истории математики наблюдается давняя традиция привлечения к процессу счета подобных помощников, начиная со счета на пальцах и заканчивая компьютером. Но план Бэббиджа отличался необычной амбициозностью. Обнародовал он эту идею в работе, представленной в Королевском астрономическом обществе в 1822 г., а годом позже получил от британского правительства 1700 фунтов на пилотный проект. К 1842 г. инвестиции правительства выросли до 17 000 фунтов (в сегодняшних деньгах это примерно три четверти миллиона фунтов – $1 млн), при том что реальной работающей машины так и не появилось. Ада и ее мать в 1833 г. видели прототип – небольшую часть проекта. Что еще хуже (с точки зрения правительства), Бэббидж после почти 20 лет работы предложил еще более амбициозный проект – Аналитическую машину, настоящий программируемый компьютер, построенный из хитроумно устроенных штырьков, рычажков, пружинок и храповичков. Эта машина положила начало целому жанру научной фантастики – так называемому стимпанку, где действуют механические версии всего на свете, от компьютеров до мобильных телефонов и интернета. Как ни печально, и Разностная, и Аналитическая машины навсегда остались научной фантастикой. Однако уже в наше время Разностная машина была построена в Лондонском музее науки; руководил проектом Дорон Суэйд. Машина, построенная по второму проекту Бэббиджа, работает; ее можно сегодня осмотреть в музее. Другая машина, построенная по первому проекту Бэббиджа, находится в Музее истории компьютера в Калифорнии. Построить Аналитическую машину никто пока не пытался.

 

* * *

В 1834 г. Ада встретилась с одной из великих женщин-математиков Мэри Сомервиль, близким другом Бэббиджа. Вдвоем они провели немало часов за разговорами о математике; Мэри одалживала Аде учебники и предлагала задачи для решения. Говорили они и о Бэббидже с его Разностной машиной. Две женщины подружились и вместе ходили не только на научные демонстрации, но и, к примеру, на концерты.

В 1835 г. Ада вышла замуж за Уильяма Кинга-Ноэля, ставшего через три года первым графом Лавлейсом. У супругов родилось трое детей, после чего Ада вернулась к своей первой любви – математике, которой и стала заниматься под руководством известного математика, логика и оригинала Огастеса де Моргана, основателя Лондонского математического общества и грозы математических фриков. В 1843 г. она начала тесно сотрудничать с Бэббиджем; их сотрудничество выросло из репортажа о лекции про Аналитическую машину, прочитанной Бэббиджем в Турине в 1840 г. Луиджи Менабреа сделал на лекции записи и собрал их для публикации.

Быстрый переход