Выходит отрезок ОВ<sub>1</sub>. Он заметно меньше отрезка ОГ, изображающего метр Гали в ее системе отсчета.
Наоборот, метр Гали в системе Вали (ОГ<sub>1</sub>) меньше Валиного метра (ОB).
Для Вали Галины метры короче, чем ее собственные, а для Гали — Валины. Теперь мы это обосновали графически.
Абсолютное в относительном
Я забыл вам сказать, что Галя растянула ленту по ракетному прилавку за несколько секунд до встречи с Валей.
Раньше лента была свернута. А после пререканий раздосадованная Галя своими сверхпроворными руками мгновенно смотала ленту и спрятала ее в шкаф. Таким образом, развернутая лента заняла ограниченную часть мира пространства — времени. Это нетрудно нарисовать на диаграмме:
Заштрихованная часть — лента, пока она была развернута.
«Подставьте» к ней неодинаково движущихся наблюдателей — каждый воспримет ее «под своей длиной» и «под своим временем». На диаграмме выйдет нечто вроде изменений угла зрения, под которым с разных расстояний видна фабричная труба.
Однако в предыдущей главе, рассуждая на эту тему, я обещал вам указать некий признак предмета, не зависящий от движения наблюдателя. Пришла пора исполнить обещание.
Признак этот называется интервалом. Его существование строго следует из геометрических особенностей мира Минковского, из того факта, что неодинаковы масштабы длин и длительностей для осей времени и расстояний, направленных на диаграмме в разные стороны.
Так вот, не мудрствуя дальше, я прошу вас принять на веру следующее.
Можно доказать, что на каждой из наших диаграмм (построенных при помощи световых линий, симметричных относительно них осей времени и расстояний и гиперболических калибровочных кривых) в любых системах отсчета остается одинаковым математическое выражение:
l<sup>2</sup>-c<sup>2</sup>t<sup>2</sup>.
Здесь l — длина предмета или расстояние между событиями, a t — длительность существования предмета или промежуток времени между событиями. Корень квадратный из этой величины и есть интервал:
Вот оно, неизменное и абсолютное в безбрежном море эйнштейновской относительности!
От качества к количеству
Что же такое интервал? Каков его физический смысл?
Это — пространственно-временной промежуток между событиями, выражающий, говоря словами Минковского, «некий род единства» пространства и времени.
Галина лента не имеет абсолютной длины, не имеет абсолютной длительности («времени жизни» в размотанном состоянии). Но она имеет интервал — «некое единство» длины и длительности.
Причем каждый наблюдатель, измеривший длину и время бытия развернутой ленты своими линейкой и часами, может быть уверен: вычисленная величина квадрата интервала ленты и у него, и у всех его коллег из других иначе движущихся систем отсчета получится точно такой же.
В этой неизменности (физики говорят — инвариантности) интервала — драгоценное свойство природы, рецепт для вычисления количественных релятивистских эффектов. Прежде нам были доступны лишь смутные, чисто качественные рассуждения. Я произносил неопределенные слова «длиннее», «короче», «быстрее», «медленнее», и только. Теперь же открыта дверь к математической точности, к числу.
Благодаря инвариантности интервала я вправе сделать о ленте следующее математическое утверждение, объединяющее точки зрения и Гали и Вали:
l<sup>2</sup>-c<sup>2</sup>t<sup>2</sup> = l’<sup>2 </sup>- c<sup>2</sup>t’<sup>2</sup>
А из этого равенства после не очень сложных выкладок вытекают знаменитые формулы, называемые преобразованиями Лоренца . |