А впрочем, ничего сверхъестественно трудного в нем нет.
Три плюс одно
Чаще всего физические тела движутся в пространстве в трех взаимно перпендикулярных измерениях (и в длину, и в ширину, и в высоту). Строго говоря, только такие движения и существуют. Самолет облетает гору — и поднимается, и сворачивает; автомобиль делает вираж и прыгает по ухабам; Луна кружит вокруг Земли и вокруг Солнца сразу. Конечно, старое условие остается в силе: мы обсуждаем пока только равномерные и прямолинейные движения. Но и для них наиболее общи объемные системы отсчета.
Поэтому реальная диаграмма Минковского должна иметь в каждой системе не одну и не две пространственные оси, а три — длину, ширину и высоту. И к ним добавится еще ось времени.
Надо, чтобы три пространственные оси расположились под прямыми углами друг к другу (как ребра аквариума). И чтобы ось времени тоже была к ним перпендикулярна— сразу ко всем трем. Этим условиям должен удовлетворять полный — уже без всяких упрощений — мир Минковского.
Увы, как ни старайтесь, такой четырехмерной диаграммы вы не построите. Ни на листе бумаги, ни в объемной модели. Потому что пространство, в котором мы живем, всего лишь трехмерно. Четвертое измерение (время) некуда будет девать: его никак не поставишь перпендикулярно к трем остальным.
Но то, что нельзя построить, можно попробовать вообразить.
Знатоки геометрии умеют, не строя четырехмерных фигур, чертить их проекции на трехмерное пространство или плоскость. Получаются соответственно объемные тела и плоские фигуры. Примерно так же на плоскость (скажем, стену комнаты) или на линию (натянутую нить) падают тени (проекции) объемных трехмерных тел — людей, чайников, стульев и т. д.
Короче говоря, несмотря на то, что уменьшенную копию четырехмерного мира Минковского нельзя нарисовать на бумаге или вылепить из глины, оперировать с ним можно. И составлять с его помощью сложные «расписания» множества сверхбыстрых движений. В расписаниях нас интересуют времена и расстояния, а они как раз и складываются из «теней» — из проекций пространственно-временных интервалов на оси, плоскости, объемы систем отсчета.
Новое зрение
Так мы добрались до удивительного вообще-то вывода: мир четырехмерен. При жизни Минковского, в годы молодости Эйнштейна это было воспринято кое-кем чуть ли не как божественное откровение.
Тогда, в начале века, широкая публика начала понемножку интересоваться успехами математики, и вошли в моду салонные беседы о многомерных пространствах. Невообразимые, неощутимые, они казались обиталищем таинственных миров-невидимок, которые пронизывают и обнимают нашу скромную трехмерную Вселенную. Многие склонны были видеть в четырехмерности не математическую абстракцию, а нечто потустороннее, мистическое. И, конечно же, по инерции перенесли такое отношение на мир Минковского. А стало быть, и на теорию Эйнштейна.
Однажды некая знатная дама после популярной лекции Эйнштейна восхищенно поблагодарила его за «подтверждение сверхъестественной четырехмерности». Эйнштейн расхохотался. Дама ровным счетом ничего не поняла. Найти мистику в четырехмерной пространственно-временной диаграмме можно с таким же успехом, как в таблице футбольных игр.
Мир Минковского — это только сочетание графиков, геометрическая иллюстрация физического единства пространства и времени. Каждое событие фиксируется в любой системе отсчета не тремя, а четырьмя величинами—тремя координатами пространства и одной времени.
Вот и вся премудрость.
Этот новый мир — мир-диаграмма. Взгляд сразу на обе составные части системы отсчета — и на пространство и на время. Очень удобный ракурс для физического «зрения».
Но только пользоваться им надо с оглядкой. И помнить одну очень существенную черту четырехмерного мира: одна из осей во всех его системах отсчета — ось времени — неравноправна с тремя остальными. |