Изменить размер шрифта - +

Еще в Древней Греции математики обнаружили сходящиеся бесконечные последовательности, но они были столь поражены тем, что количество членов последовательности бесконечно, что даже не могли предположить, что сумма таких последовательностей может быть не бесконечной величиной. Греческий математик и философ Зенон поставил ряд задач, называемых парадоксами, которые, казалось бы, опровергают совершенно очевидные постулаты. Один из его парадоксов служил доказательством того, что движение в принципе невозможно. Эти парадоксы считались неразрешимыми на протяжении столетий, до тех пор, пока не выяснилась правда о сходящихся бесконечных последовательностях.

Самый знаменитый парадокс Зенона называется «Ахилл и черепаха». Древнегреческий герой Ахилл славился как прекрасный бегун, а черепаха известна тем, что передвигается чрезвычайно медленно. Тем не менее Зенон продемонстрировал, что Ахилл никогда не сможет догнать черепаху в соревновании по бегу, если изначально у черепахи будет преимущество.

Предположим, что Ахилл бегает в десять раз быстрее черепахи, но к началу соревнований у черепахи будет преимущество в 100 ярдов. В несколько прыжков Ахилл преодолеет расстояние в 100 ярдов, но за это время черепаха, которая двигается в десять раз медленнее Ахилла (что очень неплохо для черепахи), пройдет 10 ярдов. Ахилл пробегает и эти 10 ярдов, но черепаха удаляется от него на 1 ярд. Тогда Ахилл пробегает один ярд, но черепаха удаляется от него на 1/10 ярда, и так далее до бесконечности.

Вот видите, что происходит. Ахилл продолжает движение, но и черепаха движется, и Ахилл не может ее догнать. И более того, повторяя это рассуждение для другого первоначального разрыва между черепахой и Ахиллом, мы можем сказать, что, каким бы малым ни было изначальное преимущество черепахи, будь это один фут или один дюйм, ничего не изменится. Ахилл никогда не сможет добиться никакого преимущества, а это, в свою очередь, означает невозможность движения вообще.

Конечно, вы прекрасно знаете, что Ахилл может догнать черепаху и движение возможно, следовательно, доказательство Зенона несет в себе противоречие, то есть является парадоксом.

А теперь рассмотрим подробно задачу Зенона. Где ошибка в его рассуждениях? Предположим, Ахилл бежит со скоростью 10 ярдов в секунду, а черепаха движется со скоростью 1 ярд в секунду. Ахилл пробегает первые 100 ярдов за 10 секунд. За это время черепаха проходит 10 ярдов. Ахилл преодолевает 10 ярдов за одну секунду, а черепаха за это время проходит 1 ярд. Ахилл преодолеет этот ярд за 0,1 секунды, а черепаха удалится от него на 0,1 ярда.

Иными словами, время, которое нужно Ахиллу для того, чтобы догнать черепаху, представляет собой убывающую последовательность 100, 10, 1, 0,1, 0,01, 0,001, 0,0001, 0,00001…

Сколько времени понадобится Ахиллу для того, чтобы преодолеть бесконечную последовательность уменьшающихся расстояний? Зенон считал, что раз число членов в последовательности бесконечно, то и сумма должна быть бесконечной. Он не мог себе представить, что последовательность бесконечного количества чисел может быть сходящейся и иметь конечную сумму.

Например, если мы сложим первые два члена последовательности Зенона, мы получим 11, сумма первых трех членов равна 11,1, первых четырех — 11,11, первых пяти — 11,111, первых шести 11,1111. А если представить себе сумму всего бесконечного ряда, то мы получим 11,11111111111111111… И так до бесконечности.

А что такое 11,111111111…? Это десятичный эквивалент числа 11<sup>1</sup>/<sub>9</sub>. Если перевести 11<sup>1</sup>/<sub>9 </sub>в десятичную дробь, мы получим как раз 11,11111111111111111…

Таким образом, сумма последовательности в задаче Зенона составляет 11<sup>1</sup>/<sub>9</sub> секунды. Это то самое время, которое понадобится Ахиллу, чтобы преодолеть все последовательно убывающие расстояния, на которые удаляется от него черепаха.

Быстрый переход