Изменить размер шрифта - +

По существу первый фотоэлемент был построен уже самим Столетовым при его опытах по изучению фотоэффекта.

Посмотрите на рисунок 4.

Рис. 4. Схема простейшего фотоэлемента.

 

Вы видите здесь маленький стеклянный пузырёк. Воздух из него откачан. Внутрь этого пузырька впаяны две небольшие проволочки, соединённые с двумя металлическими пластинками. Наружные концы этих проволок присоединены к гальванометру. Сбоку пузырька имеется небольшой отросток, закрытый кварцевым окошком, прозрачным и для видимых, и для ультрафиолетовых лучей. Иными словами, перед нами, по существу, та установка Столетова без батареи, с помощью которой он наблюдал возникновение положительного электрического заряда на незаряженной пластинке при её освещении. Вместе с тем, этот прибор является и первым простейшим фотоэлементом.

Пока лучи не действуют на пластинку, тока в цепи нет. Но достаточно осветить пластинку, как в тот же момент стрелка гальванометра отклонится — в пластинках и в проволочках возникает ток электронов. Этот ток идёт от пластинки, на которую падает свет, через безвоздушное пространство внутри пузырька, к другой пластинке, а оттуда по проволоке, через гальванометр, снова к первой пластинке, т. е. по всей цепи (электрон заряжен отрицательно, а направление тока принято считать совпадающим с направлением движения положительных электрических зарядов, поэтому направление электрического тока в фотоэлементе будет обратным движению фотоэлектронов, то есть между пластинками фотоэлемента — от анода к катоду, а во внешней цепи — от катода к аноду).

Таким образом, здесь энергия лучей, поглощённых металлической пластинкой, превращается в энергию электрического тока.

Отрицательную пластинку фотоэлемента, на которую падают лучи света, принято называть катодом. Вторую пластинку называют анодом.

Однако чувствительность к свету этого фотоэлемента очень невелика: при освещении катода в нём возникает слишком слабый электрический ток. Использовать его для каких-либо практических целей ещё нельзя.

Современные фотоэлементы устроены уже иначе, но по сути дела они не отличаются от своего предка. Пришлось лишь немало поработать над тем, чтобы увеличить их чувствительность к свету и сделать их, таким образом, пригодными для практического использования (о применении фотоэлементов рассказывается в III главе).

Теперь изготовляются самые различные типы фотоэлементов. При этом фотоэлементы отличаются друг от друга не только своим устройством. Различные фотоэлементы по-разному «чувствуют» различные световые лучи. В одних фотоэлементах электрический ток возникает только при освещении, скажем, зелёными или жёлтыми лучами.

Другие работают в том случае, когда на них падает красный свет (именно в этих фотоэлементах используется избирательный, селективный, фотоэффект). Имеются фотоэлементы, которые «чувствуют» только ультрафиолетовые лучи, и т. д.

Кроме того, современные фотоэлементы делятся на две большие группы: вакуумные и газонаполненные.

Вакуумные — это такие фотоэлементы, у которых воздух из стеклянного пузырька откачан по возможности полностью.

Другие фотоэлементы — газонаполненные — заполняют каким-либо инертным газом, который не действует химически на катод, не портит его. Обычно для этой цели применяют газ аргон.

Схема устройства современного фотоэлемента показана на рисунке 5.

Рис. 5. Схема фотоэлемента с центральным анодом.

 

Светочувствительный слой — катод — покрывает почти всю поверхность стеклянного пузырька, за исключением! небольшого окошка для доступа света. Анод же имеет вид небольшой проволочной петли или дощечки, укреплённой внутри этого пузырька. Такие фотоэлементы производятся на наших заводах в настоящее время. Внешний вид подобного фотоэлемента вы уже видели в начале книжки, на рисунке 1.

Быстрый переход