Изменить размер шрифта - +
Таким образом были получены и суспензии, состоящие из одних митохондрий.

А в 40-х годах XX века появились и новые микроскопы с небывалой увеличительной мощностью. Теперь вместо лучей света, фокусируемых с помощью оптических линз, стали использоваться пучки электронов, фокусируемые с помощью магнитных полей. С помощью таких электронных микроскопов наконец-то стало возможным как следует рассмотреть митохондрии, диаметр которых составляет всего один-три микрона, то есть в тысячу раз меньше самой клетки.

Использование электронного микроскопа позволило установить, что митохондрия окружена двойной мембраной, рассекающей тело органеллы, разделяющей ее на части и многократно увеличивающей, таким образом, площадь поверхности митохондрии.

В ходе экспериментов выяснилось, что суспензия митохондрии катализирует все без исключения реакции, входящие в цикл Кребса. Так стало ясно, что «электростанцией» клетки служит именно митохондрия, мембраны которой представляют собой скопление ферментов и коферментов, необходимых для катаболизма пищевых веществ и производства высокоэнергетических фосфатных связей. Было подсчитано, что в среднем отдельная митохондрия представляет собой около 10 000 «сборочных пунктов», на каждом из которых может происходить полный цикл катаболизма, отщепляться атом водорода и создаваться высокоэнергетическая фосфатная связь.

Более подробная информация о молекулярном устройстве митохондрии наверняка еще появится по мере разработки более мощных научных инструментов.

 

 

Глава 24.

ГДЕ СХОДЯТСЯ ВСЕ ПУТИ

 

Последние четыре главы были посвящены, тем или иным образом, процессам, связанным с катаболизмом глюкозы — сначала до молочной кислоты путем анаэробного гликолиза, потом — до углекислоты и воды путем цикла Кребса. Однако нельзя сказать, чтобы это были единственные способы, которыми организм может создавать высокоэнергетические связи для хранения химической энергии.

К примеру, еще в начале 50-х годов XX века британский биохимик Ф. Диккенс с коллегами смогли показать, что во многих тканях растений и микроорганизмов, а иногда — и животных, глюкоза расщепляется на трехуглеродные соединения не путем анаэробного гликолиза, а каким-то другим путем. Этот другой путь сходится с обычным гликолизом где-то на полдороге. Он проходит через этапы пяти- и четырехуглеродных Сахаров и не является анаэробным. При нем используется и дыхательная цепочка, и атмосферный кислород.

Наличие такого запасного пути важно в двух отношениях. Во-первых, если деятельность основного механизма окажется временно нарушенной, то организм не останется совсем без ресурсов — он сможет просуществовать за счет запасного механизма.

Во-вторых, при любом катаболическом механизме производится не только энергия, но и ряд промежуточных веществ. Эти промежуточные вещества организм может впоследствии использовать как строительные материалы для процессов анаболизма. К примеру, различные промежуточные вещества, участвующие в цикле Кребса, могут служить основой для формирования некоторых аминокислот. Достаточно прибавить к щавелево-уксусной кислоте аминогруппу, и она станет аспарагиновой кислотой; прибавить аминогруппу к альфа-кетоглутаровой кислоте — она станет глютаминовой кислотой (именно поэтому наличие этих двух кислот в пище не является обязательным).

Так что разумная избыточность механизмов обмена веществ имеет свои преимущества, поскольку предоставляет организму большее количество строительных материалов. Упомянутый выше «обходной путь» приводит к созданию нескольких пятиуглеродных Сахаров и родственных им веществ. Их можно использовать для образования необходимых огромных молекул нуклеиновых кислот, чьей важной составляющей являются именно пятиуглеродные сахара.

Анаэробный гликолиз и реакции цикла Кребса тем не менее являются главными путями катаболизма глюкозы, и рассматривать альтернативные варианты более подробно сейчас не имеет смысла.

Быстрый переход